1000 spider silkomes: Linking sequences to silk physical properties

Kazuharu Arakawa, Nobuaki Kono, Ali D. Malay, Ayaka Tateishi, Nao Ifuku, Hiroyasu Masunaga, Ryota Sato, Kousuke Tsuchiya, Rintaro Ohtoshi, Daniel Pedrazzoli, Asaka Shinohara, Yusuke Ito, Hiroyuki Nakamura, Akio Tanikawa, Yuya Suzuki, Takeaki Ichikawa, Shohei Fujita, Masayuki Fujiwara, Masaru Tomita, Sean J. BlamiresJo Ann Chuah, Hamish Craig, Choon P. Foong, Gabriele Greco, Juan Guan, Chris Holland, David L. Kaplan, Kumar Sudesh, Biman B. Mandal, Y. Norma-Rashid, Nur A. Oktaviani, Rucsanda C. Preda, Nicola M. Pugno, Rangam Rajkhowa, Xiaoqin Wang, Kenjiro Yazawa, Zhaozhu Zheng, Keiji Numata

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.

Original languageEnglish
JournalScience Advances
Issue number41
Publication statusPublished - 2022 Oct

ASJC Scopus subject areas

  • General


Dive into the research topics of '1000 spider silkomes: Linking sequences to silk physical properties'. Together they form a unique fingerprint.

Cite this