3D culture of mouse iPSCs in hydrogel core-shell microfibers

Kazuhiro Ikeda, Teru Okitsu, Hiroaki Onoe, Shoji Takeuchi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper reports the culturing and expansion of mouse induced pluripotent stem cells (iPSCs) in hydrogel core-shell microfibers; the core consists of iPSCs with or without extracellular matrix (ECM) proteins, and the shell is composed of calcium alginate. We revealed that mouse iPSCs cultured in the micro-scale space with ECM proteins sustain their pluriotency efficiently. This 3D culture system may be a useful tool to expand iPSCs for clinical use.

Original languageEnglish
Title of host publication2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages463-464
Number of pages2
EditionFebruary
ISBN (Electronic)9781479979554
DOIs
Publication statusPublished - 2015 Feb 26
Externally publishedYes
Event2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015 - Estoril, Portugal
Duration: 2015 Jan 182015 Jan 22

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
NumberFebruary
Volume2015-February
ISSN (Print)1084-6999

Other

Other2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015
Country/TerritoryPortugal
CityEstoril
Period15/1/1815/1/22

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of '3D culture of mouse iPSCs in hydrogel core-shell microfibers'. Together they form a unique fingerprint.

Cite this