A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression

Andrew R. Gallimore, A. Radu Aricescu, Michisuke Yuzaki, Radu Calinescu

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

The expression of long-term depression (LTD) in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC) activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins–glutamate receptor-interacting protein (GRIP) and protein interacting with C kinase 1 (PICK1)–regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process.

Original languageEnglish
Article numbere1004664
JournalPLoS Computational Biology
Volume12
Issue number1
DOIs
Publication statusPublished - 2016

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modelling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression'. Together they form a unique fingerprint.

Cite this