TY - JOUR
T1 - A human Dravet syndrome model from patient induced pluripotent stem cells
AU - Higurashi, Norimichi
AU - Uchida, Taku
AU - Lossin, Christoph
AU - Misumi, Yoshio
AU - Okada, Yohei
AU - Akamatsu, Wado
AU - Imaizumi, Yoichi
AU - Zhang, Bo
AU - Nabeshima, Kazuki
AU - Mori, Masayuki X.
AU - Katsurabayashi, Shutaro
AU - Shirasaka, Yukiyoshi
AU - Okano, Hideyuki
AU - Hirose, Shinichi
N1 - Funding Information:
The authors thank the patient and parents for their cooperation in this study. We are indebted to Ms. Akiyo Hamachi and Ms. Minako Yonetani for excellent technical assistance. This work was supported in part by a Grants-in -Aid for Scientific Research (A) (21249062), for Challenging Exploratory Research (23659529 and 2570481), for Scientific Research on Innovative Areas, and for Bilateral Joint Research Projects from Japan Society for the Promotion of Science (JSPS) to S.H.; a Grant-in-Aid for Scientific Research on Innovative Areas “Genome Science” to S.H.; a Grant-in-Aid for Young Scientists (B) (24791095) from JSPS to N.H.; a Grant-in-Aid for the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) Exploratory Research from Japan Science and Technology Agency (JST) to S.H.; Research Grants for Nervous and Mental Disorder (21B-5), Health and Labor Science Research Grant (21210301 and KB220001), and a Grant-in-aid for the Research on Measures for Intractable Diseases (No. H22-Nanji-Ippan-49) from the Ministry of Health, Labor and Welfare (MHLW) to S. H.; the Project for the Realization of Regenerative Medicine from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) to H.O.; The Program for Intractable Disease Research utilizing Disease-specific iPS Cells from JST to H.O. Research grants from The Japan Foundation for Pediatric Research (10–003), The Clinical Research Promotion Foundation, and Kaibara Morikazu Medical Science Promotion Foundation to N.H.; Research grants from The Japan Epilepsy Research Foundation to N.H. and T.U.; and Research grants from the 2013–2017 “Central Research Institute for the Molecular Pathomechanisms of Epilepsy of Fukuoka University” and Recommended Projects of Fukuoka University (117016) to S.H.
Funding Information:
Details on the PCR conditions for SCN1A, SCN2A, SCN1B, and SCN2B sequencing are available on request. The control iPSCs, 201B7, were provided by the RIKEN BioResource Center through the Project for Realization of Regenerative Medicine and the National Bio-Resource Project of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in Japan. iPSC production was approved by the Keio University School of Medicine Ethics Committee (Approval No. 20-16-18) and the Human Ethics Committee of Fukuoka University (Approval No. 361).
PY - 2013
Y1 - 2013
N2 - Background: Dravet syndrome is a devastating infantile-onset epilepsy syndrome with cognitive deficits and autistic traits caused by genetic alterations in SCN1A gene encoding the α-subunit of the voltage-gated sodium channel Nav1.1. Disease modeling using patient-derived induced pluripotent stem cells (iPSCs) can be a powerful tool to reproduce this syndrome's human pathology. However, no such effort has been reported to date. We here report a cellular model for DS that utilizes patient-derived iPSCs. Results: We generated iPSCs from a Dravet syndrome patient with a c.4933C>T substitution in SCN1A, which is predicted to result in truncation in the fourth homologous domain of the protein (p.R1645*). Neurons derived from these iPSCs were primarily GABAergic (>50%), although glutamatergic neurons were observed as a minor population (<1%). Current-clamp analyses revealed significant impairment in action potential generation when strong depolarizing currents were injected. Conclusions: Our results indicate a functional decline in Dravet neurons, especially in the GABAergic subtype, which supports previous findings in murine disease models, where loss-of-function in GABAergic inhibition appears to be a main driver in epileptogenesis. Our data indicate that patient-derived iPSCs may serve as a new and powerful research platform for genetic disorders, including the epilepsies.
AB - Background: Dravet syndrome is a devastating infantile-onset epilepsy syndrome with cognitive deficits and autistic traits caused by genetic alterations in SCN1A gene encoding the α-subunit of the voltage-gated sodium channel Nav1.1. Disease modeling using patient-derived induced pluripotent stem cells (iPSCs) can be a powerful tool to reproduce this syndrome's human pathology. However, no such effort has been reported to date. We here report a cellular model for DS that utilizes patient-derived iPSCs. Results: We generated iPSCs from a Dravet syndrome patient with a c.4933C>T substitution in SCN1A, which is predicted to result in truncation in the fourth homologous domain of the protein (p.R1645*). Neurons derived from these iPSCs were primarily GABAergic (>50%), although glutamatergic neurons were observed as a minor population (<1%). Current-clamp analyses revealed significant impairment in action potential generation when strong depolarizing currents were injected. Conclusions: Our results indicate a functional decline in Dravet neurons, especially in the GABAergic subtype, which supports previous findings in murine disease models, where loss-of-function in GABAergic inhibition appears to be a main driver in epileptogenesis. Our data indicate that patient-derived iPSCs may serve as a new and powerful research platform for genetic disorders, including the epilepsies.
KW - Action potential
KW - Disease modeling
KW - Dravet syndrome
KW - Epileptogenesis
KW - Gamma aminobutyric acid
KW - Induced pluripotent stem cells
KW - Nav1.1
KW - SCN1A
UR - http://www.scopus.com/inward/record.url?scp=84876839257&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876839257&partnerID=8YFLogxK
U2 - 10.1186/1756-6606-6-19
DO - 10.1186/1756-6606-6-19
M3 - Article
C2 - 23639079
AN - SCOPUS:84876839257
SN - 1756-6606
VL - 6
JO - Molecular brain
JF - Molecular brain
IS - 1
M1 - 19
ER -