TY - JOUR
T1 - A novel GDP-dependent pyruvate kinase isozyme from Toxoplasma gondii localizes to both the apicoplast and the mitochondrion
AU - Saito, Tomoya
AU - Nishi, Manami
AU - Lim, Muoy I.
AU - Wu, Bo
AU - Maeda, Takuya
AU - Hashimoto, Hisayuki
AU - Takeuchi, Tsutomu
AU - Roos, David S.
AU - Asai, Takashi
PY - 2008/5/16
Y1 - 2008/5/16
N2 - We previously reported a cytosolic pyruvate kinase (EC 2.7.1.40) from Toxoplasma gondii (TgPyKI) that differs from most eukaryotic pyruvate kinases in being regulated by glucose 6-phosphate rather than fructose 1,6-diphosphate. Another putative pyruvate kinase (TgPyKII) was identified from parasite genome, which exhibits 32% amino acid sequence identity to TgPyKI and retains pyruvate kinase signature motifs and amino acids essential for substrate binding and catalysis. Whereas TgPyKI is most closely related to plant/algal enzymes, phylogenetic analysis suggests a proteobacterial origin for TgPyKII. Enzymatic characterization of recombinant TgPyKII shows a high pH optimum at 8.5, and a preference for GDP as a phosphate recipient. Catalytic activity is independent of K+, and no allosteric or regulatory effects were observed in the presence of fructose 1,6-diphosphate, fructose 2,6-diphosphate, glucose 6-phosphate, ribose 5-phosphate, AMP, or ATP. Unlike TgPyKI, native TgPyKII activity was exclusively associated with the membranous fraction of a T. gondii tachyzoite lysate. TgPyKII possesses a long N-terminal extension containing five putative start codons before the conserved region and localizes to both apicoplast and mitochondrion by immunofluorescence assay using native antibody and fluorescent protein fusion to the N-terminal extension. Further deletional and site-directed mutagenesis suggests that a translation product from 1st Met is responsible for the localization to the apicoplast, whereas one from 3rd Met is for the mitochondrion. This is the first study of a potential mitochondrial pyruvate kinase in any system.
AB - We previously reported a cytosolic pyruvate kinase (EC 2.7.1.40) from Toxoplasma gondii (TgPyKI) that differs from most eukaryotic pyruvate kinases in being regulated by glucose 6-phosphate rather than fructose 1,6-diphosphate. Another putative pyruvate kinase (TgPyKII) was identified from parasite genome, which exhibits 32% amino acid sequence identity to TgPyKI and retains pyruvate kinase signature motifs and amino acids essential for substrate binding and catalysis. Whereas TgPyKI is most closely related to plant/algal enzymes, phylogenetic analysis suggests a proteobacterial origin for TgPyKII. Enzymatic characterization of recombinant TgPyKII shows a high pH optimum at 8.5, and a preference for GDP as a phosphate recipient. Catalytic activity is independent of K+, and no allosteric or regulatory effects were observed in the presence of fructose 1,6-diphosphate, fructose 2,6-diphosphate, glucose 6-phosphate, ribose 5-phosphate, AMP, or ATP. Unlike TgPyKI, native TgPyKII activity was exclusively associated with the membranous fraction of a T. gondii tachyzoite lysate. TgPyKII possesses a long N-terminal extension containing five putative start codons before the conserved region and localizes to both apicoplast and mitochondrion by immunofluorescence assay using native antibody and fluorescent protein fusion to the N-terminal extension. Further deletional and site-directed mutagenesis suggests that a translation product from 1st Met is responsible for the localization to the apicoplast, whereas one from 3rd Met is for the mitochondrion. This is the first study of a potential mitochondrial pyruvate kinase in any system.
UR - http://www.scopus.com/inward/record.url?scp=46649104129&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=46649104129&partnerID=8YFLogxK
U2 - 10.1074/jbc.M709015200
DO - 10.1074/jbc.M709015200
M3 - Article
C2 - 18326043
AN - SCOPUS:46649104129
SN - 0021-9258
VL - 283
SP - 14041
EP - 14052
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 20
ER -