A reversible thermal panel for spacecraft thermal control (evaluation of effectiveness and reliability of new autonomous thermal control device)

Hosei Nagano, Akira Ohnishi, Yuji Nagasaka, Akira Nagashima

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

The current trend in spacecraft design toward high-density packing of the payload electronics and increased waste heat flux will require the development of lightweight high thermal conductive materials and innovative thermal control techniques. Additionally, new challenging missions will require new techniques to adapt to a variety of environmental conditions. In this study, a new passive thermal control device - a Reversible Thermal Panel (RTP) based on high thermal conductive graphite sheets and shape memory alloy - is proposed. The RTP changes its function reversibly from radiator to solar absorber by deploying/stowing a reversible fin. Thermal analyses were conducted to predict the fundamental thermal performance of the RTP. A breadboard model of the RTP based on the graphite sheets and aluminum alloys was fabricated, and the thermal vacuum test was conducted with the reversible fin deployed and stowed. The desired variability in thermal performance of the RTP due to deploying or stowing the reversible fin was demonstrated. Comparison of the predicted results with test results indicated a good agreement.

Original languageEnglish
Pages (from-to)350-367
Number of pages18
JournalHeat Transfer - Asian Research
Volume34
Issue number5
DOIs
Publication statusPublished - 2005 Jul 1

Keywords

  • Anisotropy
  • Deployable radiator
  • Graphite sheet
  • Radiator/absorber
  • Reversible thermal panel
  • Spacecraft thermal control

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'A reversible thermal panel for spacecraft thermal control (evaluation of effectiveness and reliability of new autonomous thermal control device)'. Together they form a unique fingerprint.

Cite this