A review of regenerative therapy for spinal cord injury using human iPS cells

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Spinal cord injury (SCI) has been considered to cause sudden, irreversible loss of function in patients. However, developments in stem cell biology and regenerative medicine are changing this conventional notion. Here we reviewed the overview of regenerative medicine of SCI. As a consequence of the establishment of human induced pluripotent stem cells (hiPSCs), hiPSC-based therapies for SCI, such as neural stem/progenitor cell (NS/PC) transplantation, have emerged as promising therapeutic modalities. Using several animal models, hiPSC-NS/PC transplantation into subacute injured spinal cords has been repeatedly demonstrated to improve locomotor function. Some biological mechanisms underlying this improvement have been proposed. In particular, combined with advanced neuroscience techniques such as designer receptors exclusively activated by designer drugs (DREADDs), neuronal relay theory, in which the transplanted cell-derived neurons reconstruct disrupted neuronal circuits, was proven to be involved histologically, pharmaceutically, electrophysiologically, and via in vivo bioimaging. Based on these findings, hiPSC-NS/PC transplantation for subacute SCI was moved ahead to a clinical study on human patients. At the same time, the search for effective treatments for chronic SCI is proceeding gradually, combining hiPSC-NS/PC transplantation with other treatment modalities such as rehabilitation, pharmaceutical interventions, or optimal scaffolds. In addition to NS/PCs, oligodendrocyte precursor cells (OPCs) are also a promising cell source for transplantation, as demyelinated axons affected by SCI can be repaired by OPCs. Therapies with OPCs derived from hiPSCs are still in preclinical studies but have shown favorable outcomes in animal models. In the future, several therapeutic options may be available according to the pathological conditions and the time period of SCI. Moreover, the application of regenerative therapy for the spinal cord could be broadened to degenerative disorders, such as spinal canal stenosis. Summary sentence: A historical review of human induced pluripotent stem cell (hiPSC) based cell transplantation therapy for spinal cord injury (SCI), in particular about footsteps of hiPSC-derived neural stem/progenitor cell transplantation, recent clinical study, and its future perspective.

Original languageEnglish
Article number100184
JournalNorth American Spine Society Journal
Volume13
DOIs
Publication statusPublished - 2023 Mar

Keywords

  • Clinical study
  • Human induced pluripotent stem cell (iPS cell)
  • Neural stem/progenitor cell (NS/PC)
  • Oligodendrocyte precursor cell (OPC)
  • Regenerative medicine
  • Spinal cord injury
  • Transplantation

ASJC Scopus subject areas

  • Surgery
  • Orthopedics and Sports Medicine
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'A review of regenerative therapy for spinal cord injury using human iPS cells'. Together they form a unique fingerprint.

Cite this