Abstract
This paper develops a model reduction method for a large-scale interconnected system that consists oflinear dynamic components. In the model reduction, we aim to preserve physical characteristics of each component. To this end, we formulate a structured model reduction problem that reduces the model order of components while preserving the feedback structure. Although there are a few conventional methods for such structured model reduction to preserve stability, they do not explicitly consider performance of the reduced-order feedback system. One of the difficulties in the problem with performance guarantee comes from nonlinearity of a feedback system to each component. The problem is essentially in a class of nonlinear optimization problems, and therefore it cannot be efficiently solved even in numerical computation. In this paper, application of an equivalent transformation and a proper approximation reduces this nonlinear problem to a problem of the weighted linear model reduction. Then, by using the weighted balanced truncation technique, we construct a reduced-order model with preserving the feedback structure to ensure small modeling error. Finally, we verify the effectiveness of the proposed method through numerical experiments.
Original language | English |
---|---|
Article number | 012108 |
Journal | Journal of Physics: Conference Series |
Volume | 744 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2016 Oct 3 |
Event | 13th International Conference on Motion and Vibration Control, MOVIC 2016 and the 12th International Conference on Recent Advances in Structural Dynamics, RASD 2016 - Southampton, United Kingdom Duration: 2016 Jul 4 → 2016 Jul 6 |
ASJC Scopus subject areas
- Physics and Astronomy(all)