Acceleration of discrete stochastic biochemical simulation using GPGPU

Kei Sumiyoshi, Kazuki Hirata, Noriko Hiroi, Akira Funahashi

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130.

Original languageEnglish
Article number42
JournalFrontiers in Physiology
Volume6
Issue numberFEB
DOIs
Publication statusPublished - 2015

Keywords

  • CUDA
  • Direct method
  • GPGPU
  • Parallel processing
  • SBML
  • Stochastic simulation algorithm

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Acceleration of discrete stochastic biochemical simulation using GPGPU'. Together they form a unique fingerprint.

Cite this