Adjoint QCD on ℝ3 × S1 with twisted fermionic boundary conditions

Tatsuhiro Misumi, Takuya Kanazawa

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)


We investigate QCD with adjoint Dirac fermions on ℝ3 × S1 with generic boundary conditions for fermions along S 1. By means of perturbation theory, semiclassical methods and a chiral effective model, we elucidate a rich phase structure in the space spanned by the S1 compactification scale L, twisted fermionic boundary condition φ and the fermion mass m. We found various phases with or without chiral and center symmetry breaking, separated by first- and second-order phase transitions, which in specific limits (φ = 0, φ = π, L → 0 and m → ∞) reproduce known results in the literature. In the center- symmetric phase at small L, we show that Ünsal's bion-induced confinement mechanism is at work but is substantially weakened at φ ≠ 0 by a linear potential between monopoles. Through an analytic and numerical study of the PNJL model, we show that the order parameters for center and chiral symmetries (i.e., Polyakov loop and chiral condensate) are strongly intertwined at φ ≠ 0. Due to this correlation, a deconfined phase can intervene between a weak-coupling center-symmetric phase at small L and a strong-coupling one at large L. Whether this happens or not depends on the ratio of the dynamical fermion mass to the energy scale of the Yang-Mills theory. Implication of this possibility for resurgence in gauge theories is briefly discussed. In an appendix, we study the index of the adjoint Dirac operator on ℝ3 × S1 with twisted boundary conditions, which is important for semiclassical analysis of monopoles.

Original languageEnglish
Article number181
JournalJournal of High Energy Physics
Issue number6
Publication statusPublished - 2014 Jun


  • Phase Diagram of QCD
  • Phenomenological Models
  • Spontaneous Symmetry Breaking

ASJC Scopus subject areas

  • Nuclear and High Energy Physics


Dive into the research topics of 'Adjoint QCD on ℝ3 × S1 with twisted fermionic boundary conditions'. Together they form a unique fingerprint.

Cite this