AKT signaling is associated with epigenetic reprogramming via the upregulation of TET and its cofactor, alpha-ketoglutarate during iPSC generation

Yoichi Sekita, Yuki Sugiura, Akari Matsumoto, Yuki Kawasaki, Kazuya Akasaka, Ryo Konno, Momoka Shimizu, Toshiaki Ito, Eiji Sugiyama, Terushi Yamazaki, Eriko Kanai, Toshinobu Nakamura, Makoto Suematsu, Fumitoshi Ishino, Yoshio Kodera, Takashi Kohda, Tohru Kimura

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


Background: Phosphoinositide-3 kinase (PI3K)/AKT signaling participates in cellular proliferation, survival and tumorigenesis. The activation of AKT signaling promotes the cellular reprogramming including generation of induced pluripotent stem cells (iPSCs) and dedifferentiation of primordial germ cells (PGCs). Previous studies suggested that AKT promotes reprogramming by activating proliferation and glycolysis. Here we report a line of evidence that supports the notion that AKT signaling is involved in TET-mediated DNA demethylation during iPSC induction. Methods: AKT signaling was activated in mouse embryonic fibroblasts (MEFs) that were transduced with OCT4, SOX2 and KLF4. Multiomics analyses were conducted in this system to examine the effects of AKT activation on cells undergoing reprogramming. Results: We revealed that cells undergoing reprogramming with artificially activated AKT exhibit enhanced anabolic glucose metabolism and accordingly increased level of cytosolic α-ketoglutarate (αKG), which is an essential cofactor for the enzymatic activity of the 5-methylcytosine (5mC) dioxygenase TET. Additionally, the level of TET is upregulated. Consistent with the upregulation of αKG production and TET, we observed a genome-wide increase in 5-hydroxymethylcytosine (5hmC), which is an intermediate in DNA demethylation. Moreover, the DNA methylation level of ES-cell super-enhancers of pluripotency-related genes is significantly decreased, leading to the upregulation of associated genes. Finally, the transduction of TET and the administration of cell-permeable αKG to somatic cells synergistically enhance cell reprogramming by Yamanaka factors. Conclusion: These results suggest the possibility that the activation of AKT during somatic cell reprogramming promotes epigenetic reprogramming through the hyperactivation of TET at the transcriptional and catalytic levels.

Original languageEnglish
Article number510
JournalStem Cell Research and Therapy
Issue number1
Publication statusPublished - 2021 Dec


  • AKT signal
  • DNA demethylation
  • Reprogramming
  • TET
  • iPS cells
  • αKG

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Molecular Medicine
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Cell Biology


Dive into the research topics of 'AKT signaling is associated with epigenetic reprogramming via the upregulation of TET and its cofactor, alpha-ketoglutarate during iPSC generation'. Together they form a unique fingerprint.

Cite this