An explainable deep learning-based algorithm with an attention mechanism for predicting the live birth potential of mouse embryos

Yuta Tokuoka, Takahiro G. Yamada, Daisuke Mashiko, Zenki Ikeda, Tetsuya J. Kobayashi, Kazuo Yamagata, Akira Funahashi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


In assisted reproductive technology (ART), embryos produced by in vitro fertilization (IVF) are graded according to their live birth potential, and high-grade embryos are preferentially transplanted. However, rates of live birth following clinical ART remain low worldwide. Grading is based on the embryo shape at a limited number of stages and does not consider the shape of embryos and intracellular structures, e.g., nuclei, at various stages important for normal embryogenesis. Here, we developed a Normalized Multi-View Attention Network (NVAN) that directly predicts live birth potential from the nuclear structure in live-cell fluorescence images of mouse embryos from zygote to across a wide range of stages. The input is morphological features of cell nuclei, which were extracted as multivariate time-series data by using the segmentation algorithm for mouse embryos. The classification accuracy of our method (83.87%) greatly exceeded that of existing machine-learning methods and that of visual inspection by embryo culture specialists. Our method also has a new attention mechanism that allows us to determine which values of multivariate time-series data, used to describe nuclear morphology, were the basis for the prediction. By visualizing the features that contributed most to the prediction of live birth potential, we found that the size and shape of the nucleus at the morula stage and at the time of cell division were important for live birth prediction. We anticipate that our method will help ART and developmental engineering as a new basic technology for IVF embryo selection.

Original languageEnglish
Article number102432
JournalArtificial Intelligence in Medicine
Publication statusPublished - 2022 Dec


  • Assisted reproductive technology
  • Attention-based recurrent neural networks
  • Developmental biology
  • Embryogenesis
  • Live-cell imaging
  • Time-series classification

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Artificial Intelligence


Dive into the research topics of 'An explainable deep learning-based algorithm with an attention mechanism for predicting the live birth potential of mouse embryos'. Together they form a unique fingerprint.

Cite this