Analysis of Structural Stability of Chignolin

Yutaka Maruyama, Ayori Mitsutake

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


We discuss the stability of an entire protein and the influence of main chains and side chains of individual amino acids to investigate the protein-folding mechanism. For this purpose, we calculated the solvation free-energy contribution of individual atoms using the three-dimensional reference interaction site model with the atomic decomposition method. We generated structures of chignolin miniprotein by a molecular dynamics simulation and classified them into six types: native 1, native 2, misfolded 1, misfolded 2, intermediate, and unfolded states. The total energies of the native (-171.1 kcal/mol) and misfolded (-171.2 kcal/mol) states were almost the same and lower than those of the intermediate (-158.5 kcal/mol) and unfolded (-148.1 kcal/mol) states; however, their components were different. In the native state, the side-chain interaction between Thr6 and Thr8 is important for the formation of π-turn. On the other hand, the hydrogen bonds between the atoms of the main chains in the misfolded state become stronger than those in the intermediate state.

Original languageEnglish
Pages (from-to)3801-3814
Number of pages14
JournalJournal of Physical Chemistry B
Issue number14
Publication statusPublished - 2018 Apr 12

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Analysis of Structural Stability of Chignolin'. Together they form a unique fingerprint.

Cite this