Application of tension control into linear motor-actuated cable differential-driven joint

Tomoko Kawase, Keita Shimamoto, Kazuki Tanida, Kouhei Ohnishi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Tendon-driven systems are one of efficient methods to downsize robots. This paper discusses application of tension control into a joint using cable differential. Cable differential is mechanism which allows two-degrees of freedom (DOF) in one joint. Controllers for the cable differential-driven joint are proposed in the paper. The joint is actuated by four linear motors. The controllers are designed regarding the tendon-driven system as a redundant system. In this way, tension control is considered as a task in the null space. This makes implementation of tension control stereotypical.

Original languageEnglish
Title of host publicationAbstracts - 2012 12th IEEE International Workshop on Advanced Motion Control, AMC 2012
DOIs
Publication statusPublished - 2012 Jun 4
Event2012 12th IEEE International Workshop on Advanced Motion Control, AMC 2012 - Sarajevo, Bosnia and Herzegovina
Duration: 2012 Mar 252012 Mar 27

Publication series

NameInternational Workshop on Advanced Motion Control, AMC

Other

Other2012 12th IEEE International Workshop on Advanced Motion Control, AMC 2012
Country/TerritoryBosnia and Herzegovina
CitySarajevo
Period12/3/2512/3/27

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modelling and Simulation
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Application of tension control into linear motor-actuated cable differential-driven joint'. Together they form a unique fingerprint.

Cite this