TY - GEN
T1 - Asymptotic expansions for double Shintani zeta-functions of several variables
AU - Katsurada, Masanori
PY - 2011
Y1 - 2011
N2 - This is a summarized version of the forthcoming paper [19]. Let m and n be any positive integers. We write e(x)=e2π√-1, and use the vectorial notation x=(x1,...,xm) for any complex x and xi(i=1,...,m). The main object of this paper is the Shintani zeta-function φ̃n(s,a,λ;z) defined by (1.4) below, where sj(j=1,...,n) are complex variables, ai and λi(i=1,2) real parameters with ai>0, and z j complex parameters with |argzj|<π(j=1,...,n). We shall first present a complete asymptotic expansion of φ̃ n(s,a,λ;z) in the ascending order of zn as z n→0 (Theorem 1), and that in the descending order of z n as zn→∞ (Theorem 2), both through the sectorial region |argzn-θ0|<π/2 for any angle θ0 with |θ0|<π/2, while other z j's move within the same sector upon satisfying the conditions z j≈zn(j=1,...,n-1). It is significant that the Lauricella hypergeometric functions (defined by (2.1) below) appear in each term of the asymptotic series on the right sides of (2.7) and (2.10). Our main formulae (2.6) (with (2.7) and (2.8)) and (2.9) (with (2.10) and (2.11)) further yield several functional properties of φ̃n(s,a,λ;z) (Corollaries 1-3).
AB - This is a summarized version of the forthcoming paper [19]. Let m and n be any positive integers. We write e(x)=e2π√-1, and use the vectorial notation x=(x1,...,xm) for any complex x and xi(i=1,...,m). The main object of this paper is the Shintani zeta-function φ̃n(s,a,λ;z) defined by (1.4) below, where sj(j=1,...,n) are complex variables, ai and λi(i=1,2) real parameters with ai>0, and z j complex parameters with |argzj|<π(j=1,...,n). We shall first present a complete asymptotic expansion of φ̃ n(s,a,λ;z) in the ascending order of zn as z n→0 (Theorem 1), and that in the descending order of z n as zn→∞ (Theorem 2), both through the sectorial region |argzn-θ0|<π/2 for any angle θ0 with |θ0|<π/2, while other z j's move within the same sector upon satisfying the conditions z j≈zn(j=1,...,n-1). It is significant that the Lauricella hypergeometric functions (defined by (2.1) below) appear in each term of the asymptotic series on the right sides of (2.7) and (2.10). Our main formulae (2.6) (with (2.7) and (2.8)) and (2.9) (with (2.10) and (2.11)) further yield several functional properties of φ̃n(s,a,λ;z) (Corollaries 1-3).
KW - Mellin-Barnes integral
KW - Shintani zeta-function
KW - asymptotic expansion
UR - http://www.scopus.com/inward/record.url?scp=81755162353&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=81755162353&partnerID=8YFLogxK
U2 - 10.1063/1.3630041
DO - 10.1063/1.3630041
M3 - Conference contribution
AN - SCOPUS:81755162353
SN - 9780735409477
T3 - AIP Conference Proceedings
SP - 58
EP - 72
BT - Diophantine Analysis and Related Fields 2011, DARF - 2011
T2 - Diophantine Analysis and Related Fields 2011, DARF - 2011
Y2 - 3 March 2011 through 5 March 2011
ER -