Asymptotic representations for fibonacci reciprocal sums and euler’s formulas for zeta values

Carsten Elsner, Shun Shimomura, Iekata Shiokawa

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We present asymptotic representations for certain reciprocal sums of Fibonacci numbers and of Lucas numbers as a parameter tends to a critical value. As limiting cases of our results, we obtain Euler’s formulas for values of zeta functions.

Original languageEnglish
Pages (from-to)145-157
Number of pages13
JournalJournal de Theorie des Nombres de Bordeaux
Volume21
Issue number1
DOIs
Publication statusPublished - 2009
Externally publishedYes

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint

Dive into the research topics of 'Asymptotic representations for fibonacci reciprocal sums and euler’s formulas for zeta values'. Together they form a unique fingerprint.

Cite this