TY - GEN
T1 - Automatic segmentation of hepatocellular structure from HE-stained liver tissue
AU - Ishikawa, Masahiro
AU - Ahi, Sercan Taha
AU - Murakami, Yuri
AU - Kimura, Fumikazu
AU - Yamaguchi, Masahiro
AU - Abe, Tokiya
AU - Hashiguchi, Akinori
AU - Sakamoto, Michiie
PY - 2013
Y1 - 2013
N2 - The analysis of hepatic tissue structure is required for quantitative assessment of liver histology. Especially, a cord-like structure of liver cells, called trabecura, has important information in the diagnosis of hepatocellular carcinoma (HCC). However, the extraction of trabeculae is thought to be difficult because liver cells take on various colors and appearances depending on tissue conditions. In this paper, we propose an approach to extract trabeculae from images of hematoxyline and eosin stained liver tissue slide by extracting the rest of trabeculae: sinusoids and stromal area. The sinusoids are simply extracted based on the color information, where the image is corrected by an orientation selective filtering before segmentaion. The stromal area mainly consists of fiber, and often includes lymphocytes densely. Therefore, in the proposed method, fiber region and lymphocytes are extracted separately, then, stromal region is determined based on the extracted results. The determination of stroma is performed based on superpixels, to obtain precise boundaries. Once the regions of sinusoids and stroma are obtained, trabeculae can be segmented as the remaining region. The proposed method was applied to 10 test images of normal and HCC liver tissues, and the results were evaluated based on the manual segmentation. As a result, we confirmed that both sensitivity and specificity of the extraction of trabeculae reach around 90%.
AB - The analysis of hepatic tissue structure is required for quantitative assessment of liver histology. Especially, a cord-like structure of liver cells, called trabecura, has important information in the diagnosis of hepatocellular carcinoma (HCC). However, the extraction of trabeculae is thought to be difficult because liver cells take on various colors and appearances depending on tissue conditions. In this paper, we propose an approach to extract trabeculae from images of hematoxyline and eosin stained liver tissue slide by extracting the rest of trabeculae: sinusoids and stromal area. The sinusoids are simply extracted based on the color information, where the image is corrected by an orientation selective filtering before segmentaion. The stromal area mainly consists of fiber, and often includes lymphocytes densely. Therefore, in the proposed method, fiber region and lymphocytes are extracted separately, then, stromal region is determined based on the extracted results. The determination of stroma is performed based on superpixels, to obtain precise boundaries. Once the regions of sinusoids and stroma are obtained, trabeculae can be segmented as the remaining region. The proposed method was applied to 10 test images of normal and HCC liver tissues, and the results were evaluated based on the manual segmentation. As a result, we confirmed that both sensitivity and specificity of the extraction of trabeculae reach around 90%.
KW - HE-staining
KW - Liver histology
KW - Liver trabecula
KW - Segmentation
UR - http://www.scopus.com/inward/record.url?scp=84878565881&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878565881&partnerID=8YFLogxK
U2 - 10.1117/12.2006669
DO - 10.1117/12.2006669
M3 - Conference contribution
AN - SCOPUS:84878565881
SN - 9780819494504
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2013
T2 - SPIE Medical Imaging Symposium 2013: Digital Pathology
Y2 - 10 February 2013 through 11 February 2013
ER -