Abstract
We newly developed high-performance blood coagulation nanofibres using Polycaprolactone (PCL) including Calcium carbonate (CaCO3) and β-chitosan. The most important feature for a wound dressing is that it is harmless to the human body. Here, we fabricated the nanofibre using all human-safe materials. We used a PCL nanofibre mat as a substrate and then synthesized artificial CaCO3 from sodium carbonate and calcium chloride. The CaCO3 was then added to the fibre solution to create PCL/CaCO3 nanofibres. We coated PCL and PCL/CaCO3 nanofibres with β-chitosan as a hemostatic material via a spray method. For the more uniform coating, we used ultrasonic spray coating method and then compared the blood coagulation abilities of the PCL and PCL/CaCO3 nanofibres. We found that the PCL/CaCO3 nanofibres sprayed with β-chitosan had a greater effect on blood coagulation than the PCL nanofibres. In the result of animal experiment, β-chitosan have a key role in changing of surface wettability from hydrophobic to hydrophilic. Moreover, this is contributed to enhance blood coagulability. PCL/CaCO3 nanofibres sprayed with β-chitosan therefore offer promise in medical applications.
Original language | English |
---|---|
Pages (from-to) | 194-202 |
Number of pages | 9 |
Journal | Polymer |
Volume | 123 |
DOIs | |
Publication status | Published - 2017 Aug 11 |
Keywords
- Calcium carbonate
- Electrospinning
- Hemostatic effect
- Nanofibre
- Polycaprolactone
- β-chitosan
ASJC Scopus subject areas
- Organic Chemistry
- Polymers and Plastics
- Materials Chemistry