Broad-bandwidth pulse propagation through ultrahigh-quality-factor microcavity with chirped pulse

Akitoshi Chen-Jinnai, Wataru Yoshiki, Takasumi Tanabe

Research output: Contribution to journalArticlepeer-review

Abstract

We propose and numerically investigate a method that enables the transmission of pulses with broader bandwidth than the spectrum width of the resonance of an ultrahigh-quality-factor (Q) microcavity. The method is based on prechirping of the input pulse and the use of the optical Kerr effect in a microcavity, with which we designed the instantaneous frequency of the input pulse to meet the resonant frequency of the dynamically modulated microcavity. We showed that a prechirped pulse can transmit about 11.8 times higher energy than a Fourier-limited pulse having the same spectrum width. We also found that adiabatic wavelength conversion is inherent in this system and the spectrum intensity of particular wavelength components is even higher than the peak of the transmitted spectrum of a linear cavity.

Original languageEnglish
Article number122201
JournalJapanese journal of applied physics
Volume54
Issue number12
DOIs
Publication statusPublished - 2015 Dec

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Broad-bandwidth pulse propagation through ultrahigh-quality-factor microcavity with chirped pulse'. Together they form a unique fingerprint.

Cite this