Conductive diamond: Synthesis, properties, and electrochemical applications

Nianjun Yang, Siyu Yu, Julie V. MacPherson, Yasuaki Einaga, Hongying Zhao, Guohua Zhao, Greg M. Swain, Xin Jiang

Research output: Contribution to journalReview articlepeer-review

305 Citations (Scopus)


Conductive diamond possesses unique features as compared to other solid electrodes, such as a wide electrochemical potential window, a low and stable background current, relatively rapid rates of electron-transfer for soluble redox systems without conventional pretreatment, long-term responses, stability, biocompatibility, and a rich surface chemistry. Conductive diamond microcrystalline and nanocrystalline films, structures and particles have been prepared using a variety of approaches. Given these highly desirable attributes, conductive diamond has found extensive use as an enabling electrode across a variety of fields encompassing chemical and biochemical sensing, environmental degradation, electrosynthesis, electrocatalysis, and energy storage and conversion. This review provides an overview of the fundamental properties and highlights recent progress and achievements in the growth of boron-doped (metal-like) and nitrogen and phosphorus-doped (semi-conducting) diamond and hydrogen-terminated undoped diamond electrodes. Applications in electroanalysis, environmental degradation, electrosynthesis electrocatalysis, and electrochemical energy storage are also discussed. Diamond electrochemical devices utilizing micro-scale, ultramicro-scale, and nano-scale electrodes as well as their counterpart arrays are viewed. The challenges and future research directions of conductive diamond are discussed and outlined. This review will be important and informative for chemists, biochemists, physicists, materials scientists, and engineers engaged in the use of these novel forms of carbon.

Original languageEnglish
Pages (from-to)157-204
Number of pages48
JournalChemical Society Reviews
Issue number1
Publication statusPublished - 2019 Jan 7

ASJC Scopus subject areas

  • General Chemistry


Dive into the research topics of 'Conductive diamond: Synthesis, properties, and electrochemical applications'. Together they form a unique fingerprint.

Cite this