Control of endothelial quiescence by FOXO-regulated metabolites

Jorge Andrade, Chenyue Shi, Ana S.H. Costa, Jeongwoon Choi, Jaeryung Kim, Anuradha Doddaballapur, Toshiya Sugino, Yu Ting Ong, Marco Castro, Barbara Zimmermann, Manuel Kaulich, Stefan Guenther, Kerstin Wilhelm, Yoshiaki Kubota, Thomas Braun, Gou Young Koh, Ana Rita Grosso, Christian Frezza, Michael Potente

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)


Endothelial cells (ECs) adapt their metabolism to enable the growth of new blood vessels, but little is known how ECs regulate metabolism to adopt a quiescent state. Here, we show that the metabolite S-2-hydroxyglutarate (S-2HG) plays a crucial role in the regulation of endothelial quiescence. We find that S-2HG is produced in ECs after activation of the transcription factor forkhead box O1 (FOXO1), where it limits cell cycle progression, metabolic activity and vascular expansion. FOXO1 stimulates S-2HG production by inhibiting the mitochondrial enzyme 2-oxoglutarate dehydrogenase. This inhibition relies on branched-chain amino acid catabolites such as 3-methyl-2-oxovalerate, which increase in ECs with activated FOXO1. Treatment of ECs with 3-methyl-2-oxovalerate elicits S-2HG production and suppresses proliferation, causing vascular rarefaction in mice. Our findings identify a metabolic programme that promotes the acquisition of a quiescent endothelial state and highlight the role of metabolites as signalling molecules in the endothelium.

Original languageEnglish
Pages (from-to)413-423
Number of pages11
JournalNature Cell Biology
Issue number4
Publication statusPublished - 2021 Apr

ASJC Scopus subject areas

  • Cell Biology


Dive into the research topics of 'Control of endothelial quiescence by FOXO-regulated metabolites'. Together they form a unique fingerprint.

Cite this