TY - JOUR
T1 - Core-level shifts in x-ray photoelectron spectroscopy of arsenic defects in silicon crystal
T2 - A first-principles study
AU - Yamauchi, Jun
AU - Yoshimoto, Yoshihide
AU - Suwa, Yuji
N1 - Funding Information:
This work was supported by a Grant-in-Aid for Scientific Research (Grant No. 22104006) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT). Part of the computations was performed at the Research Center for Computational Science, Okazaki, and the Supercomputer Center, Institute for Solid State Physics, University of Tokyo, Japan.
Publisher Copyright:
© 2020 Author(s).
PY - 2020/11/1
Y1 - 2020/11/1
N2 - We systematically investigated the arsenic (As) 3d core-level x-ray photoelectron spectroscopy (XPS) binding energy and formation energy for As defects in silicon by first-principles calculation with a high accuracy of 0.1 eV by careful evaluation of the supercell size. For As, we adopt a pseudopotential with 3d states as the valence and the spherical hole approximation to ensure the convergence of self-consistent calculation for the XPS binding energy with large size systems. Some of the examined model defects have threefold coordinated As atoms. The XPS binding energies of these As atoms are distributed in the narrow region from -0.66 eV to -0.73 eV in neutral charge states. Such defects in negative charge states have a lower XPS binding energy by about 0.1 eV. From the XPS binding energy and electrical activity, negatively charged defects of a vacancy and two adjacent substitutional As atoms (As2V) are the most probable candidates for the experimentally observed peak at -0.8 eV called BEM from the reference substitutional As peak. Under the experimental condition, we find that As2V-,2- do not deeply trap electrons and are electrically inactive. We also demonstrate the surface effect that surface states near the bandgap decrease the XPS binding energy, which may generate defects with low binding energies similarly to the experimental peak at -1.2 eV called BEL.
AB - We systematically investigated the arsenic (As) 3d core-level x-ray photoelectron spectroscopy (XPS) binding energy and formation energy for As defects in silicon by first-principles calculation with a high accuracy of 0.1 eV by careful evaluation of the supercell size. For As, we adopt a pseudopotential with 3d states as the valence and the spherical hole approximation to ensure the convergence of self-consistent calculation for the XPS binding energy with large size systems. Some of the examined model defects have threefold coordinated As atoms. The XPS binding energies of these As atoms are distributed in the narrow region from -0.66 eV to -0.73 eV in neutral charge states. Such defects in negative charge states have a lower XPS binding energy by about 0.1 eV. From the XPS binding energy and electrical activity, negatively charged defects of a vacancy and two adjacent substitutional As atoms (As2V) are the most probable candidates for the experimentally observed peak at -0.8 eV called BEM from the reference substitutional As peak. Under the experimental condition, we find that As2V-,2- do not deeply trap electrons and are electrically inactive. We also demonstrate the surface effect that surface states near the bandgap decrease the XPS binding energy, which may generate defects with low binding energies similarly to the experimental peak at -1.2 eV called BEL.
UR - http://www.scopus.com/inward/record.url?scp=85095730262&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095730262&partnerID=8YFLogxK
U2 - 10.1063/5.0025316
DO - 10.1063/5.0025316
M3 - Article
AN - SCOPUS:85095730262
SN - 2158-3226
VL - 10
JO - AIP Advances
JF - AIP Advances
IS - 11
M1 - 115301
ER -