Cortical neural dynamics unveil the rhythm of natural visual behavior in marmosets

Takaaki Kaneko, Misako Komatsu, Tetsuo Yamamori, Noritaka Ichinohe, Hideyuki Okano

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Numerous studies have shown that the visual system consists of functionally distinct ventral and dorsal streams; however, its exact spatial-temporal dynamics during natural visual behavior remain to be investigated. Here, we report cerebral neural dynamics during active visual exploration recorded by an electrocorticographic array covering the entire lateral surface of the marmoset cortex. We found that the dorsal stream was activated before the primary visual cortex with saccades and followed by the alteration of suppression and activation signals along the ventral stream. Similarly, the signal that propagated from the dorsal to ventral visual areas was accompanied by a travelling wave of low frequency oscillations. Such signal dynamics occurred at an average of 220 ms after saccades, which corresponded to the timing when whole-brain activation returned to background levels. We also demonstrated that saccades could occur at any point of signal flow, indicating the parallel computation of motor commands. Overall, this study reveals the neural dynamics of active vision, which are efficiently linked to the natural rhythms of visual exploration.

Original languageEnglish
Article number108
JournalCommunications biology
Issue number1
Publication statusPublished - 2022 Dec

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)


Dive into the research topics of 'Cortical neural dynamics unveil the rhythm of natural visual behavior in marmosets'. Together they form a unique fingerprint.

Cite this