TY - GEN
T1 - Crack formation on membrane electrode assembly (Mea) under static and cyclic loadings
AU - Kai, Yusuke
AU - Kitayama, Yuki
AU - Omiya, Masaki
AU - Uchiyama, Tomoaki
AU - Kato, Manabu
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Mechanical reliabilities of membrane electrode assemblies (MEA) in polymer electrolyte fuel cells (PEFCs) are a major concern to fuel cell vehicles. Hygro-thermal cyclic conditions induce the mechanical stress in MEA and cracks are formed under operating conditions. The purpose of this paper is to understand the failure mechanism of MEA under several mechanical and environmental conditions for the critical design of durable PEFCs. We carried out both static tensile tests and low cycle fatigue tests for MEA. For tensile tests, temperature and humidity in a test chamber were controlled and the surface crack formation of MEA was observed by a video micro scope in situ. Low cycle fatigue tests were carried out in room condition and the number of cycles to crack formation was measured. The results showed that the mechanical properties of MEA were influenced by temperature and humidity. The observations of MEA during tensile tests revealed that cracks were formed on the surface of catalyst layers just after the yielding of MEA. This result indicates that the deformation mismatch between catalyst layer and proton exchange membrane (PEM) is an important parameter to suppress the crack formation in MEA. The results of low cycle fatigue tests revealed that the fatigue strength of MEA followed the Coffin-Manson law and the fatigue design of MEA based on the Coffin-Manson law is possible. This result is valuable for the critical design of durable PEFCs.
AB - Mechanical reliabilities of membrane electrode assemblies (MEA) in polymer electrolyte fuel cells (PEFCs) are a major concern to fuel cell vehicles. Hygro-thermal cyclic conditions induce the mechanical stress in MEA and cracks are formed under operating conditions. The purpose of this paper is to understand the failure mechanism of MEA under several mechanical and environmental conditions for the critical design of durable PEFCs. We carried out both static tensile tests and low cycle fatigue tests for MEA. For tensile tests, temperature and humidity in a test chamber were controlled and the surface crack formation of MEA was observed by a video micro scope in situ. Low cycle fatigue tests were carried out in room condition and the number of cycles to crack formation was measured. The results showed that the mechanical properties of MEA were influenced by temperature and humidity. The observations of MEA during tensile tests revealed that cracks were formed on the surface of catalyst layers just after the yielding of MEA. This result indicates that the deformation mismatch between catalyst layer and proton exchange membrane (PEM) is an important parameter to suppress the crack formation in MEA. The results of low cycle fatigue tests revealed that the fatigue strength of MEA followed the Coffin-Manson law and the fatigue design of MEA based on the Coffin-Manson law is possible. This result is valuable for the critical design of durable PEFCs.
UR - http://www.scopus.com/inward/record.url?scp=84892660429&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84892660429&partnerID=8YFLogxK
U2 - 10.1115/FuelCell2012-91164
DO - 10.1115/FuelCell2012-91164
M3 - Conference contribution
AN - SCOPUS:84892660429
SN - 9780791844823
T3 - ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012
SP - 143
EP - 151
BT - ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2012 Collocated with the ASME 2012 6th International Conference on Energy Sustainability
Y2 - 23 July 2012 through 26 July 2012
ER -