Cutoff radius effect of the isotropic periodic sum method in homogeneous system. II. Water

Kazuaki Takahashi, Tetsu Narumi, Kenji Yasuoka

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)


Molecular dynamics simulation has been applied for water to compare the isotropic periodic sum (IPS) method [X. Wu and B. R. Brooks, J. Chem. Phys. 122, 044107 (2005)] with the Ewald sum based on the diffusion coefficient and liquid structure. The IPS method gives a good estimation for the self-diffusion coefficient at a cutoff radius, rc, greater than 2.2 nm; however, the radial distribution function g (r) has a notable deviation. The peak of this deviation appears at specific intermolecular distances which are near each cutoff radius and decrease in proportion to the inverse of the cube of r c. Thus the deviation becomes insignificant (less than 1%) at r c greater than 2.2 nm. The distance dependent Kirkwood factor G k (r) was also calculated, and since the truncation of a long-range interaction of the cutofflike method (such as cutoff with or without the switch function and the reaction field) shows serious shortcomings for dipole-dipole correlations in bulk water systems, this was observed by comparing the shape to that of the Ewald sum [Y. Yonetani, J. Chem. Phys. 124, 204501 (2006); D. van der Spoel and P. J. van Maaren, J. Chem. Theory Comput. 2, 1 (2006)]. The G k (r) of cutofflike method greatly deviate from that of the Ewald sum. However, the discrepancy of Gk (r) for the IPS method was found to be much less than that of other typical cutofflike methods. In conclusion, the IPS method is an adequately accurate technique for estimating transport coefficients and the liquid structure of water in a homogeneous system at long cutoff distances.

Original languageEnglish
Article number014109
JournalJournal of Chemical Physics
Issue number1
Publication statusPublished - 2010 Jul 7

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Cutoff radius effect of the isotropic periodic sum method in homogeneous system. II. Water'. Together they form a unique fingerprint.

Cite this