TY - JOUR
T1 - Cyclooxygenase-2 inhibitor and interferon-β synergistically induce apoptosis in human hepatoma cells in vitro and in vivo
AU - Nakamoto, Nobuhiro
AU - Higuchi, Hajime
AU - Kanamori, Hideaki
AU - Kurita, Satoshi
AU - Tada, Shinichiro
AU - Takaishi, Hiromasa
AU - Toda, Kyoko
AU - Yamada, Takaya
AU - Kumagai, Naoki
AU - Saito, Hidetsugu
AU - Hibi, Toshifumi
PY - 2006/9
Y1 - 2006/9
N2 - Recent clinical trials have shown that interferon (IFN) is effective for chemoprevention against hepatocellular carcinoma (HCC). However, it remains controversial as to whether IFN exerts direct cytotoxicity against HCC. Cyclooxygenase (COX)-2 also plays a role in hepatocarcinogenesis and may mediate resistance to apoptosis in HCC. Therefore, we aimed to elucidate the combined effect of COX-2 inhibitor, NS-398, and IFN on in vitro growth suppression of HCC using 3 hepatoma cell lines (HepG2, PLC/PRF/5, and Huh7) and in vivo nude mouse xenotransplantation model using Huh7 cells. Only minimal growth inhibition was observed after treatment with IFN-β alone in the 3 hepatoma cell lines. In contrast, treatment with NS-398 and IFN-β synergistically inhibited cell proliferation in dose- and time-dependent manner. Apoptosis was identified by 4′,6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-β up-regulated the expression of TRAIL, while NS-398 increased the expression of TRAIL receptors (especially of death receptor 5). Subsequently, activation of caspase-8 and caspase-3 was observed following the treatment with NS-398 and IFN-β. Blockade of TRAIL with a specific antibody attenuated this apoptosis. Furthermore, we found that IFN-β up-regulated COX-2 expression in Huh7 cells, and NS-398 might suppress the up-regulated COX-2 activity downstream of IFN signaling. In vivo experiment showed the combined regimen with NS-398 and IFN-β reduced the growth of xenotransplated HCCs in nude mice. In conclusion, NS-398 is sufficient to overcome IFN resistance in hepatoma cells through the TRAIL/TRAIL receptor pathway, therefore, the combination would appear to be a new therapeutic regimen for HCC.
AB - Recent clinical trials have shown that interferon (IFN) is effective for chemoprevention against hepatocellular carcinoma (HCC). However, it remains controversial as to whether IFN exerts direct cytotoxicity against HCC. Cyclooxygenase (COX)-2 also plays a role in hepatocarcinogenesis and may mediate resistance to apoptosis in HCC. Therefore, we aimed to elucidate the combined effect of COX-2 inhibitor, NS-398, and IFN on in vitro growth suppression of HCC using 3 hepatoma cell lines (HepG2, PLC/PRF/5, and Huh7) and in vivo nude mouse xenotransplantation model using Huh7 cells. Only minimal growth inhibition was observed after treatment with IFN-β alone in the 3 hepatoma cell lines. In contrast, treatment with NS-398 and IFN-β synergistically inhibited cell proliferation in dose- and time-dependent manner. Apoptosis was identified by 4′,6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-β up-regulated the expression of TRAIL, while NS-398 increased the expression of TRAIL receptors (especially of death receptor 5). Subsequently, activation of caspase-8 and caspase-3 was observed following the treatment with NS-398 and IFN-β. Blockade of TRAIL with a specific antibody attenuated this apoptosis. Furthermore, we found that IFN-β up-regulated COX-2 expression in Huh7 cells, and NS-398 might suppress the up-regulated COX-2 activity downstream of IFN signaling. In vivo experiment showed the combined regimen with NS-398 and IFN-β reduced the growth of xenotransplated HCCs in nude mice. In conclusion, NS-398 is sufficient to overcome IFN resistance in hepatoma cells through the TRAIL/TRAIL receptor pathway, therefore, the combination would appear to be a new therapeutic regimen for HCC.
KW - Death receptor
KW - Huh7
KW - Nude mice
KW - Prostaglandin E2
KW - TRAIL
UR - http://www.scopus.com/inward/record.url?scp=33749335915&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33749335915&partnerID=8YFLogxK
U2 - 10.3892/ijo.29.3.625
DO - 10.3892/ijo.29.3.625
M3 - Article
C2 - 16865278
AN - SCOPUS:33749335915
SN - 1019-6439
VL - 29
SP - 625
EP - 635
JO - International journal of oncology
JF - International journal of oncology
IS - 3
ER -