Cylindrical rotating detonation engine cooling by means of propellant injection

Keisuke Goto, Kosei Ota, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)


An engine cooling concept for cylindrical rotating detonation engine which had an injector surface on the combustor side wall has been tested and demonstrated. Thrust measurement of the cylindrical RDE (24-mm-diameter) was conducted with monitoring K-type thermocouples inserted in combustor wall. Single rotating detonation wave was observed in the testing conditions ranging from 31 to 59 g/s in this study. Combustion tests for 4.0 ~ 4.9 s were successfully done, and all injector side wall temperature increases were suppressed compared to that of combustor base plate, which had no cooling structure. This could be due to the cooling effect by the heat exchange of propellant injection. In the 4.9 s combustion test with 31 g/s, all thermocouples inserted in the combustor side wall which had the propellant injector surface showed a temperature decreasing 2.5 s after ignition even though the combustion was continuing, and implied the combustion mode shift.

Original languageEnglish
Title of host publicationAIAA Propulsion and Energy 2020 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
Number of pages9
ISBN (Print)9781624106026
Publication statusPublished - 2020
EventAIAA Propulsion and Energy 2020 Forum - Virtual, Online
Duration: 2020 Aug 242020 Aug 28

Publication series

NameAIAA Propulsion and Energy 2020 Forum


ConferenceAIAA Propulsion and Energy 2020 Forum
CityVirtual, Online

ASJC Scopus subject areas

  • Energy(all)
  • Aerospace Engineering
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering


Dive into the research topics of 'Cylindrical rotating detonation engine cooling by means of propellant injection'. Together they form a unique fingerprint.

Cite this