TY - JOUR
T1 - Cytoplasmic orientation and two-domain structure of the multidrug transporter, P-glycoprotein, demonstrated with sequence-specific antibodies
AU - Yoshimura, A.
AU - Kuwazuru, Y.
AU - Sumizawa, T.
AU - Ichikawa, M.
AU - Ikeda, S.
AU - Uda, T.
AU - Akiyama, S.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1989
Y1 - 1989
N2 - The predicted cytoplasmic orientation and two-domain structure of the multidrug efflux pump P-glycoprotein were demonstrated with sequence-specific antibodies. We synthesized peptides corresponding to amino acid residues, Glu393-Lys408 (anti-P) and Leu1206-Thr1226 (anti-C) in P-glycoprotein from human mdr1 cDNA and used these peptides to produce polyclonal antibodies. From the primary structure of P-glycoprotein, and anti-C antibody is expected to recognize another position, Leu561-Thr581, in the duplicate structure of P-glycoprotein, but anti-P recognizes only one site. These antibodies bind to multidrug-resistant cells (KB-C2) with permeabilized plasma membrane but do not bind to nonpermeabilized KB-C2 cells or parental KB cells, supporting the predicted cytoplasmic orientation of these sequences. With immunoblotting of the membrane fractions from KB-C2 cells, a major 140-kDa polypeptide of the P-glycoprotein was detected with both anti-P and anti-C. Two minor polypeptides with molecular mass of 95 and 55 kDa were also detected. When membrane vesicles were digested mildly with trypsin, the amount of these two polypeptides increased. Anti-P detected only the 95-kDa polypeptide, and anti-C detected both 95- and 55-kDa polypeptides. Achromobacter lyticus protease I (lysyl endopeptidase) and Staphylococcus aureus V8 protease also produced two polypeptides with similar molecular weights. Absorption into lectin-agarose beads and labeling with [3H]glucosamine indicated that the 95-kDa polypeptide was glycosylated but that the 55-kDa polypeptide was not. These two polypeptides as well as P-glycoprotein were photoaffinity-labeled with a calcium channel blocker, [3H]azidopine, but most of the label was found in the 55-kDa polypeptide. The yield of labeled fragments from membrane vesicles photolabeled after digestion with trypsin was similar to that from membrane vesicles digested with trypsin after photolabeling. These data indicate 1) that the 95-kDa polypeptide is the fragment corresponding to the amino-terminal half of P-glycoprotein containing sugar chains; 2) that the 55-kDa polypeptide is the carboxyl-terminal half which was mainly labeled with [3H]azidopine; and 3) that P-glycoprotein has a relatively rigid structure with a small number of protease-sensitive sites and its global structure is not destroyed by tryptic cleavage.
AB - The predicted cytoplasmic orientation and two-domain structure of the multidrug efflux pump P-glycoprotein were demonstrated with sequence-specific antibodies. We synthesized peptides corresponding to amino acid residues, Glu393-Lys408 (anti-P) and Leu1206-Thr1226 (anti-C) in P-glycoprotein from human mdr1 cDNA and used these peptides to produce polyclonal antibodies. From the primary structure of P-glycoprotein, and anti-C antibody is expected to recognize another position, Leu561-Thr581, in the duplicate structure of P-glycoprotein, but anti-P recognizes only one site. These antibodies bind to multidrug-resistant cells (KB-C2) with permeabilized plasma membrane but do not bind to nonpermeabilized KB-C2 cells or parental KB cells, supporting the predicted cytoplasmic orientation of these sequences. With immunoblotting of the membrane fractions from KB-C2 cells, a major 140-kDa polypeptide of the P-glycoprotein was detected with both anti-P and anti-C. Two minor polypeptides with molecular mass of 95 and 55 kDa were also detected. When membrane vesicles were digested mildly with trypsin, the amount of these two polypeptides increased. Anti-P detected only the 95-kDa polypeptide, and anti-C detected both 95- and 55-kDa polypeptides. Achromobacter lyticus protease I (lysyl endopeptidase) and Staphylococcus aureus V8 protease also produced two polypeptides with similar molecular weights. Absorption into lectin-agarose beads and labeling with [3H]glucosamine indicated that the 95-kDa polypeptide was glycosylated but that the 55-kDa polypeptide was not. These two polypeptides as well as P-glycoprotein were photoaffinity-labeled with a calcium channel blocker, [3H]azidopine, but most of the label was found in the 55-kDa polypeptide. The yield of labeled fragments from membrane vesicles photolabeled after digestion with trypsin was similar to that from membrane vesicles digested with trypsin after photolabeling. These data indicate 1) that the 95-kDa polypeptide is the fragment corresponding to the amino-terminal half of P-glycoprotein containing sugar chains; 2) that the 55-kDa polypeptide is the carboxyl-terminal half which was mainly labeled with [3H]azidopine; and 3) that P-glycoprotein has a relatively rigid structure with a small number of protease-sensitive sites and its global structure is not destroyed by tryptic cleavage.
UR - http://www.scopus.com/inward/record.url?scp=0024441318&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024441318&partnerID=8YFLogxK
M3 - Article
C2 - 2476441
AN - SCOPUS:0024441318
SN - 0021-9258
VL - 264
SP - 16282
EP - 16291
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 27
ER -