Design of iterative learning control for force control considering environmental impedance

Masashi Fukui, Shuhei Akutsu, Toshiaki Okano, Takahiro Nozaki, Toshiyuki Murakami

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

In this paper, a new approach for high-precise force control in repeated tasks is proposed. In the general force control, the feedback control tends to be used for a matching the output force to the desired force safely. However, when the feedback control is used, the input of the plant does not change until the error is observed. The characteristic makes reactivity bad. In the position control, the model-based feedforward control is often used to solve this problem. However, the model-based feedforward control cannot be used in force control due to the difficulty of making the accurate model. The main reason of this problem is the uncertainty of the environmental impedance. Owing to the uncertainty, the model-based feedforward control cannot work properly. To solve this problem, Iterative Learning Control (ILC) is used in this paper. ILC does not require the accurate model, and it is able to match the output force to the desired one through repeated trials. However, the convergence condition in force control has not been analyzed until now. In this paper, by taking account of the environmental impedance of the object, a new convergence restriction is proposed. Under the proposed condition, the force control in repeated tasks becomes more precise. The procedure was demonstrated on simulations.

Original languageEnglish
Title of host publicationProceedings
Subtitle of host publicationIECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4569-4574
Number of pages6
ISBN (Electronic)9781509066841
DOIs
Publication statusPublished - 2018 Dec 26
Event44th Annual Conference of the IEEE Industrial Electronics Society, IECON 2018 - Washington, United States
Duration: 2018 Oct 202018 Oct 23

Publication series

NameProceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society

Conference

Conference44th Annual Conference of the IEEE Industrial Electronics Society, IECON 2018
Country/TerritoryUnited States
CityWashington
Period18/10/2018/10/23

Keywords

  • Force control system
  • Impedance
  • Iterative learning control

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Industrial and Manufacturing Engineering
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Design of iterative learning control for force control considering environmental impedance'. Together they form a unique fingerprint.

Cite this