Abstract
We are developing a Lagrange (LG)-Monte-Carlo (MC) scheme for three-dimensional (3D) SOL/Divertor plasma fluid modeling. By using test particles, the scheme is suitable for handling 3D complex geometries. The semi-implicit treatment of the pressure gradient term enables us to improve the robustness of the coupling of the continuity and the momentum equations. Detailed numerical checks of the integrated scheme of LG-MC have been done for a simple 1D geometry. Benchmark tests between the new LG-MC and a conventional Finite-Volume scheme were carried out and good agreement was obtained. A first test calculation for a 3D cylindrical geometry has been also successfully done.
Original language | English |
---|---|
Article number | 3003 |
Journal | Plasma and Fusion Research |
Volume | 15 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Fluid simulation
- Lagrange scheme
- SOL/Divertor plasma
ASJC Scopus subject areas
- Condensed Matter Physics