Abstract
The trend started in 1997 with the introduction of common rail injection and after some protocols set new targets for overall CO2 emissions. As the diesel engine emits less CO2 than its gasoline counterpart, it kept conquering more and more market shares. Conventional diesel engine control design is mainly based on the maps techniques which required too much time, money and human resources under the number of experiments under various environmental conditions. This makes increasing system complexity. In our authors group, we have proposed that the control structure has the feedback error learning, two-degree-of-freedom controller configuration, with advanced neural networks (NNs) as the feedforward controller along the model-based control method. On the other hand, a cerebellar model articulation controller (CMAC) is a non-fully connected perceptron like associative memory network with overlapping receptive fields, which is used to resolve problems that involve rapid growth and the learning difficulty. Then CMACs have the advantages of good generalization capability, fast learning ability, and simple computation. To our best knowledge, this is new introduce the cerebellar model articulation controller (CMAC) for the control diesel engine combustion control. The effectiveness of the proposed method will be confirmed through numerical simulations based on the Tokyo University diesel engine model with triple fuel injections.
Original language | English |
---|---|
Pages (from-to) | 516-521 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 51 |
Issue number | 31 |
DOIs | |
Publication status | Published - 2018 |
Event | 5th IFAC Conference on Engine and Powertrain Control, Simulation and Modeling, E-COSM 2018 - Changchun, China Duration: 2018 Sept 20 → 2018 Sept 22 |
Keywords
- CMAC
- Combustion Control
- Control Design
- Engine Control
- FEL
- Inverse system
- Robust adaptive control
- Two-degree-of-freedom control system
ASJC Scopus subject areas
- Control and Systems Engineering