TY - JOUR
T1 - Differences in ligand-induced protein dynamics extracted from an unsupervised deep learning approach correlate with protein–ligand binding affinities
AU - Yasuda, Ikki
AU - Endo, Katsuhiro
AU - Yamamoto, Eiji
AU - Hirano, Yoshinori
AU - Yasuoka, Kenji
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Prediction of protein–ligand binding affinity is a major goal in drug discovery. Generally, free energy gap is calculated between two states (e.g., ligand binding and unbinding). The energy gap implicitly includes the effects of changes in protein dynamics induced by ligand binding. However, the relationship between protein dynamics and binding affinity remains unclear. Here, we propose a method that represents ligand-binding-induced protein behavioral change with a simple feature that can be used to predict protein–ligand affinity. From unbiased molecular simulation data, an unsupervised deep learning method measures the differences in protein dynamics at a ligand-binding site depending on the bound ligands. A dimension reduction method extracts a dynamic feature that strongly correlates to the binding affinities. Moreover, the residues that play important roles in protein–ligand interactions are specified based on their contribution to the differences. These results indicate the potential for binding dynamics-based drug discovery.
AB - Prediction of protein–ligand binding affinity is a major goal in drug discovery. Generally, free energy gap is calculated between two states (e.g., ligand binding and unbinding). The energy gap implicitly includes the effects of changes in protein dynamics induced by ligand binding. However, the relationship between protein dynamics and binding affinity remains unclear. Here, we propose a method that represents ligand-binding-induced protein behavioral change with a simple feature that can be used to predict protein–ligand affinity. From unbiased molecular simulation data, an unsupervised deep learning method measures the differences in protein dynamics at a ligand-binding site depending on the bound ligands. A dimension reduction method extracts a dynamic feature that strongly correlates to the binding affinities. Moreover, the residues that play important roles in protein–ligand interactions are specified based on their contribution to the differences. These results indicate the potential for binding dynamics-based drug discovery.
UR - http://www.scopus.com/inward/record.url?scp=85130397571&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130397571&partnerID=8YFLogxK
U2 - 10.1038/s42003-022-03416-7
DO - 10.1038/s42003-022-03416-7
M3 - Article
C2 - 35589949
AN - SCOPUS:85130397571
SN - 2399-3642
VL - 5
JO - Communications biology
JF - Communications biology
IS - 1
M1 - 481
ER -