TY - JOUR
T1 - Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage
AU - Andoh-Noda, Tomoko
AU - Akamatsu, Wado
AU - Miyake, Kunio
AU - Matsumoto, Takuya
AU - Yamaguchi, Ryo
AU - Sanosaka, Tsukasa
AU - Okada, Yohei
AU - Kobayashi, Tetsuro
AU - Ohyama, Manabu
AU - Nakashima, Kinichi
AU - Kurosawa, Hiroshi
AU - Kubota, Takeo
AU - Okano, Hideyuki
N1 - Funding Information:
We thank the RTT patients and their parents for their cooperation in this study. We also thank J. Kohyama for technical advice on the ChIP assay; M. Isoda, H. Ebise, and H. Nakagawa (Sumitomo Dainippon Pharma Co. Ltd., Osaka, Japan) for help with the microarray analyses; and Y. Imaizumi for expert technical assistance. We also thank all the members of the Okano laboratory for helpful comments and discussions. The research described in this study was partially supported by grants from the New Energy and Industrial Technology Development Organization and the Ministry of Education, Science, Sports and Culture (MEXT) and Ministry of Helath, Labour and Welfare (MHLW) of Japan to H.O.; by the Program for Intractable Disease Research Utilizing Disease-specific iPS Cells funded by the Japan Science and Technology Agency (JST)/Japan Agency for Medical Research and Development (A-MED) to H.O.; by Grants-in-Aid for Scientific Research (KAKENHI); and by the Ministry of Economy, Trade and Industry (METI) of Japan for "Development of Core Technologies for Innovative Drug Development Based Upon IT" in the project focused on developing key technology for discovering and manufacturing drugs for next-generation treatment and diagnosis (the biological-verifying studies) to T.K.
Funding Information:
We thank the RTT patients and their parents for their cooperation in this study. We also thank J. Kohyama for technical advice on the ChIP assay; M. Isoda, H. Ebise, and H. Nakagawa (Sumitomo Dainippon Pharma Co. Ltd., Osaka, Japan) for help with the microarray analyses; and Y. Imaizumi for expert technical assistance. We also thank all the members of the Okano laboratory for helpful comments and discussions. The research described in this study was partially supported by grants from the New Energy and Industrial Technology Development Organization and the Ministry of Education, Science, Sports and Culture (MEXT) and Ministry of Helath, Labour and Welfare (MHLW) of Japan to H.O.; by the Program for Intractable Disease Research Utilizing Disease-specific iPS Cells funded by the Japan Science and Technology Agency (JST)/Japan Agency for Medical Research and Development (A-MED) to H.O.; by Grants-in-Aid for Scientific Research (KAKENHI); and by the Ministry of Economy, Trade and Industry (METI) of Japan for “Development of Core Technologies for Innovative Drug Development Based Upon IT” in the project focused on developing key technology for discovering and
Publisher Copyright:
© 2015 Andoh-Noda et al.
PY - 2015/5/27
Y1 - 2015/5/27
N2 - Background: Rett syndrome (RTT) is one of the most prevalent neurodevelopmental disorders in females, caused by de novo mutations in the X-linked methyl CpG-binding protein 2 gene, MECP2. Although abnormal regulation of neuronal genes due to mutant MeCP2 is thought to induce autistic behavior and impaired development in RTT patients, precise cellular mechanisms underlying the aberrant neural progression remain unclear. Results: Two sets of isogenic pairs of either wild-type or mutant MECP2-expressing human induced pluripotent stem cell (hiPSC) lines were generated from a single pair of 10-year-old RTT-monozygotic (MZ) female twins. Mutant MeCP2-expressing hiPSC lines did not express detectable MeCP2 protein during any stage of differentiation. The lack of MeCP2 reflected altered gene expression patterns in differentiated neural cells rather than in undifferentiated hiPSCs, as assessed by microarray analysis. Furthermore, MeCP2 deficiency in the neural cell lineage increased astrocyte-specific differentiation from multipotent neural stem cells. Additionally, chromatin immunoprecipitation (ChIP) and bisulfite sequencing assays indicated that anomalous glial fibrillary acidic protein gene (GFAP) expression in the MeCP2-negative, differentiated neural cells resulted from the absence of MeCP2 binding to the GFAP gene. Conclusions: An isogenic RTT-hiPSC model demonstrated that MeCP2 participates in the differentiation of neural cells. Moreover, MeCP2 deficiency triggers perturbation of astrocytic gene expression, yielding accelerated astrocyte formation from RTT-hiPSC-derived neural stem cells. These findings are likely to shed new light on astrocytic abnormalities in RTT, and suggest that astrocytes, which are required for neuronal homeostasis and function, might be a new target of RTT therapy.
AB - Background: Rett syndrome (RTT) is one of the most prevalent neurodevelopmental disorders in females, caused by de novo mutations in the X-linked methyl CpG-binding protein 2 gene, MECP2. Although abnormal regulation of neuronal genes due to mutant MeCP2 is thought to induce autistic behavior and impaired development in RTT patients, precise cellular mechanisms underlying the aberrant neural progression remain unclear. Results: Two sets of isogenic pairs of either wild-type or mutant MECP2-expressing human induced pluripotent stem cell (hiPSC) lines were generated from a single pair of 10-year-old RTT-monozygotic (MZ) female twins. Mutant MeCP2-expressing hiPSC lines did not express detectable MeCP2 protein during any stage of differentiation. The lack of MeCP2 reflected altered gene expression patterns in differentiated neural cells rather than in undifferentiated hiPSCs, as assessed by microarray analysis. Furthermore, MeCP2 deficiency in the neural cell lineage increased astrocyte-specific differentiation from multipotent neural stem cells. Additionally, chromatin immunoprecipitation (ChIP) and bisulfite sequencing assays indicated that anomalous glial fibrillary acidic protein gene (GFAP) expression in the MeCP2-negative, differentiated neural cells resulted from the absence of MeCP2 binding to the GFAP gene. Conclusions: An isogenic RTT-hiPSC model demonstrated that MeCP2 participates in the differentiation of neural cells. Moreover, MeCP2 deficiency triggers perturbation of astrocytic gene expression, yielding accelerated astrocyte formation from RTT-hiPSC-derived neural stem cells. These findings are likely to shed new light on astrocytic abnormalities in RTT, and suggest that astrocytes, which are required for neuronal homeostasis and function, might be a new target of RTT therapy.
KW - Astrocytes
KW - DNA methylation
KW - Induced pluripotent stem cell
KW - Methyl CpG-binding protein 2/MeCP2
KW - Neural stem cell
KW - Rett syndrome
UR - http://www.scopus.com/inward/record.url?scp=84929774376&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929774376&partnerID=8YFLogxK
U2 - 10.1186/s13041-015-0121-2
DO - 10.1186/s13041-015-0121-2
M3 - Article
C2 - 26012557
AN - SCOPUS:84929774376
SN - 1756-6606
VL - 8
JO - Molecular brain
JF - Molecular brain
IS - 1
M1 - 31
ER -