TY - JOUR
T1 - Direct catalytic asymmetric Michael reaction of hydroxyketones
T2 - Asymmetric Zn catalysis with a Et2Zn/ linked-BINOL complex
AU - Harada, Shinji
AU - Kumagai, Naoya
AU - Kinoshita, Tomofumi
AU - Matsunaga, Shigeki
AU - Shibasaki, Masakatsu
PY - 2003/3/5
Y1 - 2003/3/5
N2 - Full details of our direct Michael addition of unmodified ketones using new asymmetric zinc catalysis are described. Et2Zn/(S,S)-linked-BINOL complexes were successfully applied to direct 1,4-addition reactions of hydroxyketones. The first generation Et2Zn/(S,S)-linked-BINOL 1 = 2/1 system was effective for 1,4-addition of 2-hydroxy-2′-methoxyacetophenone (3). Using 1 mol % of (S,S)-linked-BINOL 1 and 2 mol % of Et2Zn, we found that a 1,4-addition reaction of β-unsubstituted enone proceeded smoothly at 4 °C to afford products in high yield (up to 90%) and enantiomeric excess (up to 95%). In the case of β-substituted enones, however, the first generation Et2Zn/(S,S)-linked-BINOL 1 = 2/1 system was not at all effective. The second generation Et2Zn/(S,S)-linked-BINOL 1 = 4/1 with MS 3A system was developed and was effective for various β-substituted enones to afford products in good dr, yield (up to 99%), and high enantiomeric excess (up to 99% ee). With the Et2Zn/1 = 4/1 systems, catalyst loading for β-unsubstituted enone was reduced to as little as 0.01 mol % (substrate/chiral ligand = 10 000). The new system was also effective for 1,4-addition reactions of 2-hydroxy-2′-methoxypropiophenone (9) to afford chiral tert-alcohol in high enantiomeric excess (up to 96% ee). Mechanistic investigations as well as transformations of the Michael adducts into synthetically versatile intermediates are also described.
AB - Full details of our direct Michael addition of unmodified ketones using new asymmetric zinc catalysis are described. Et2Zn/(S,S)-linked-BINOL complexes were successfully applied to direct 1,4-addition reactions of hydroxyketones. The first generation Et2Zn/(S,S)-linked-BINOL 1 = 2/1 system was effective for 1,4-addition of 2-hydroxy-2′-methoxyacetophenone (3). Using 1 mol % of (S,S)-linked-BINOL 1 and 2 mol % of Et2Zn, we found that a 1,4-addition reaction of β-unsubstituted enone proceeded smoothly at 4 °C to afford products in high yield (up to 90%) and enantiomeric excess (up to 95%). In the case of β-substituted enones, however, the first generation Et2Zn/(S,S)-linked-BINOL 1 = 2/1 system was not at all effective. The second generation Et2Zn/(S,S)-linked-BINOL 1 = 4/1 with MS 3A system was developed and was effective for various β-substituted enones to afford products in good dr, yield (up to 99%), and high enantiomeric excess (up to 99% ee). With the Et2Zn/1 = 4/1 systems, catalyst loading for β-unsubstituted enone was reduced to as little as 0.01 mol % (substrate/chiral ligand = 10 000). The new system was also effective for 1,4-addition reactions of 2-hydroxy-2′-methoxypropiophenone (9) to afford chiral tert-alcohol in high enantiomeric excess (up to 96% ee). Mechanistic investigations as well as transformations of the Michael adducts into synthetically versatile intermediates are also described.
UR - http://www.scopus.com/inward/record.url?scp=0037420322&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037420322&partnerID=8YFLogxK
U2 - 10.1021/ja028928+
DO - 10.1021/ja028928+
M3 - Article
C2 - 12603146
AN - SCOPUS:0037420322
SN - 0002-7863
VL - 125
SP - 2582
EP - 2590
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 9
ER -