Direct impact of motor cortical stimulation on the blood oxygen-level dependent response in rats

Zonghao Xin, Yoshifumi Abe, Shuang Liu, Kenji F. Tanaka, Koichi Hosomi, Youichi Saitoh, Masaki Sekino

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Purpose: Neuropathic pain is a complex and distressing chronic illness in modern medicine. Since 1990s, motor cortex stimulation (MCS) has emerged as a potential treatment for chronic neuropathic pain; however, the precise mechanisms underlying analgesia induced by MCS are not completely understood. The purpose of the present study was to investigate the blood oxygen-level dependent (BOLD) response in the brain during MCS. Methods: We inserted a bipolar tungsten electrode into the primary motor cortex (M1) of adult male Wistar rats. Functional magnetic resonance imaging (fMRI) scans were implemented simultaneously with the electrical stimulation of M1 and the BOLD signals taken from the fMRI were used as an index to reflect the response against MCS. Results: Our results demonstrated that the bilateral M1, ipsilateral caudate-putamen, and ipsilateral primary somatosensory cortex to the stimulation spot were activated after the onset of MCS. The BOLD signal time courses were analysed in these regions and similar temporal characteristics were found. Conclusion: By conducting direct cortical stimulation of the rodent brain to investigate its instant effect using fMRI, we identified encephalic regions directly involved in the instant motor cortical stimulation effects in healthy rat models. This result may be essential in establishing a foundation for further research on the underlying neuropathways associated with the MCS effects.

Original languageEnglish
Pages (from-to)83-90
Number of pages8
JournalMagnetic Resonance in Medical Sciences
Issue number1
Publication statusPublished - 2021


  • Caudate-putamen
  • Functional magnetic resonance imaging
  • Motor cortex stimulation
  • Primary motor cortex

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Direct impact of motor cortical stimulation on the blood oxygen-level dependent response in rats'. Together they form a unique fingerprint.

Cite this