Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels

Shun Fujii, Shuya Tanaka, Tamiki Ohtsuka, Soma Kogure, Koshiro Wada, Hajime Kumazaki, Shun Tasaka, Yosuke Hashimoto, Yuta Kobayashi, Tomohiro Araki, Kentaro Furusawa, Norihiko Sekine, Satoki Kawanishi, Takasumi Tanabe

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)


The demand for high-speed and highly efficient optical communication techniques has been rapidly growing due to the ever-increasing volume of data traffic. As well as the digital coherent communication used for core and metro networks, intensity modulation and direct detection (IM-DD) are still promising schemes in intra/inter data centers thanks to their low latency, high reliability, and good cost performance. In this work, we study a microresonator-based frequency comb as a potential light source for future IM-DD optical systems where applications may include replacing individual stabilized lasers with a continuous laser driven microresonator. Regarding comb line powers and spectral intervals, we compare a modulation instability comb and a soliton microcomb and provide a quantitative analysis with regard to telecom applications. Our experimental demonstration achieved a forward error correction (FEC) free operation of bit-error rate (BER) <10−9 with a 1.45 Tbps capacity using a total of 145 lines over the entire C-band and revealed the possibility of soliton microcomb-based ultra-dense wavelength division multiplexing (WDM) with a simple, cost-effective IM-DD scheme, with a view to future practical use in data centers.

Original languageEnglish
Pages (from-to)1351-1364
Number of pages14
JournalOptics Express
Issue number2
Publication statusPublished - 2022 Jan 17

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels'. Together they form a unique fingerprint.

Cite this