Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows

Yukinori Kametani, Ayane Kotake, Koji Fukagata, Naoko Tokugawa

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)


Drag reduction capability of uniform blowing in supersonic turbulent boundary layers is investigated by means of direct numerical simulation of channel flows with uniform blowing on one side and suction on the other. The bulk Reynolds number based on the bulk density, the bulk mean velocity, the channel half-width, and the viscosity on the wall is set to Reb=3000. The bulk Mach number is set at 0.8 and 1.5 to investigate a subsonic and a supersonic condition, respectively. The amplitude of the blowing or suction is set to be 0.1%, 0.3%, or 0.5% of the bulk mass flow rate. At both Mach numbers, modifications of the mean streamwise velocity profiles with blowing and suction are found to be similar to those in an incompressible turbulent channel flow: The skin friction is reduced on the blowing side, while it is increased on the suction side. As for the drag reducing effect of blowing, the drag reduction rate and net-energy saving rate are hardly affected by the Mach number, while the control gain is increased with the increase of Mach number due to the increased density near the wall. The compressibility effect of drag reduction and enhancement is also examined using the physical decomposition of the skin friction drag. A noticeable Mach number effect is found only for the contribution terms containing the viscosity, which is increased by the increased temperature.

Original languageEnglish
Article number123904
JournalPhysical Review Fluids
Issue number12
Publication statusPublished - 2017 Dec

ASJC Scopus subject areas

  • Computational Mechanics
  • Modelling and Simulation
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows'. Together they form a unique fingerprint.

Cite this