Dual-task performance assessment robot

Ayanori Yorozu, Ayumi Tanigawa, Masaki Takahashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this paper, dual-task performance assessment robot (DAR) using projection is developed. Falling is a common problem in the growing elderly population. Fall-risk assessment systems have proven to be helpful in community-based fall prevention programs. One of the risk factors of falling is the deterioration of a person's dual-task performance. For example, gait training, which enhances both motor and cognitive functions, is a multi-target stepping task (MTST), in which participants step on assigned colored targets. To evaluate the dual-task performance during MTST in human living space, projection mapping and robot navigation to maintain a safe distance from the participant are key technologies. Projection mapping is used to evaluate the long-distance dual-task performance, where MTST images are displayed on the floor by the moving DAR. To evaluate the accuracy of the projected target position, experiments for MTST projection using the moving DAR and video analysis are carried out. Additionally, to verify the validity of the MTST by the moving DAR at a constant speed, experiments with several young participants are carried out.

Original languageEnglish
Title of host publicationIROS 2017 - IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6929-6934
Number of pages6
ISBN (Electronic)9781538626825
DOIs
Publication statusPublished - 2017 Dec 13
Event2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017 - Vancouver, Canada
Duration: 2017 Sept 242017 Sept 28

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2017-September
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017
Country/TerritoryCanada
CityVancouver
Period17/9/2417/9/28

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Dual-task performance assessment robot'. Together they form a unique fingerprint.

Cite this