Abstract
Monte Carlo simulations of chiral liquid-crystals, represented by a simple coarse-grained chiral Gay–Berne model, were performed to investigate the effect of central longitudinal dipole interactions on phase behavior. A systematic analysis of the structural properties and phase behavior of both achiral and chiral systems, with dipole interactions, reveals differing effects; strong dipole interactions enhance the formation of layered structures; however, chiral interactions may prevent the formation of such phases under certain conditions. We also observed a short-ranged smectic structure within the cholesteric phases with strong dipole interactions. This constitutes possible evidence of presmectic ordering and/or the existence of chiral line liquid phases, which have previously been observed in X-ray experiments to occur between the smectic twisted grain boundary and cholesteric phases. These results provide a systematic understanding of how the phase behavior of chiral liquid-crystals changes when alterations are made to the strength of dipole interactions.
Original language | English |
---|---|
Article number | 2715 |
Journal | International journal of molecular sciences |
Volume | 19 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2018 Sept 11 |
Keywords
- Chirality
- Dipole
- Liquid crystals
- Molecular simulation
- Phase transition
ASJC Scopus subject areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry