TY - JOUR
T1 - Effective 3D open-channel nanostructures of a MgMn2O4positive electrode for rechargeable Mg batteries operated at room temperature
AU - Sone, Kazuki
AU - Hayashi, Yoshihiro
AU - Mandai, Toshihiko
AU - Yagi, Shunsuke
AU - Oaki, Yuya
AU - Imai, Hiroaki
N1 - Funding Information:
This work was supported by JST ALCA-SPRING Grant Number JPMJAL1301, Japan. We thank Prof. Kiyoshi Kanamura (Tokyo Metropolitan University) and his research group for their kind support in measurements.
Publisher Copyright:
© The Royal Society of Chemistry 2021.
PY - 2021/3/21
Y1 - 2021/3/21
N2 - Room-temperature operations of rechargeable Mg coin-cell batteries have been achieved using a Mg alloy negative electrode and a spinel MgMn2O4(MMO)-positive electrode. The present work focuses on clarifying the effects of the physiochemical properties of the MMO powder including the specific surface area (SBET) and porosity of the positive electrode on Mg battery performances in practical applications. Finally, optimal specific surface area and porosity parameters were obtained that ensured excellent battery performances as a standard coin-cell at room temperature. A typical MMO powder synthesized using a modified sol-gel method with propylene oxide-driven complex polymerization had a largeSBET> 200 m2g−1, and more than 90% porosity with a triple-tiered 3D open-channel network. Here we evaluated the discharge capacity and the cyclability for room-temperature operation as a function ofSBETin a full cell with a Mg negative electrode as well as half cells with a carbon graphite electrode. Irrespective of whether half cells or a full cell was used, the initial discharge capacity was found to depend linearly on theSBETof the porous MMO powder in a Mg tetrakis(hexafluoroisopropyl)borate/triglyme electrolyte with a wide potential window, ΔE> 3.6 V. Eventually, the maximum discharge capacity of 220 mA h g−1was realized at 25 °C in the full cell using the 3D open-channel nanostructure withSBET= 236 m2g−1. The cyclability in the full cell with the Mg alloy negative electrode, however, degraded with the increasingSBET, while no cyclability degradation was observed in the half cell with the carbon electrode. A possible mechanism is discussed regarding passivation of the Mg alloy electrode in discharge/charge cycles.
AB - Room-temperature operations of rechargeable Mg coin-cell batteries have been achieved using a Mg alloy negative electrode and a spinel MgMn2O4(MMO)-positive electrode. The present work focuses on clarifying the effects of the physiochemical properties of the MMO powder including the specific surface area (SBET) and porosity of the positive electrode on Mg battery performances in practical applications. Finally, optimal specific surface area and porosity parameters were obtained that ensured excellent battery performances as a standard coin-cell at room temperature. A typical MMO powder synthesized using a modified sol-gel method with propylene oxide-driven complex polymerization had a largeSBET> 200 m2g−1, and more than 90% porosity with a triple-tiered 3D open-channel network. Here we evaluated the discharge capacity and the cyclability for room-temperature operation as a function ofSBETin a full cell with a Mg negative electrode as well as half cells with a carbon graphite electrode. Irrespective of whether half cells or a full cell was used, the initial discharge capacity was found to depend linearly on theSBETof the porous MMO powder in a Mg tetrakis(hexafluoroisopropyl)borate/triglyme electrolyte with a wide potential window, ΔE> 3.6 V. Eventually, the maximum discharge capacity of 220 mA h g−1was realized at 25 °C in the full cell using the 3D open-channel nanostructure withSBET= 236 m2g−1. The cyclability in the full cell with the Mg alloy negative electrode, however, degraded with the increasingSBET, while no cyclability degradation was observed in the half cell with the carbon electrode. A possible mechanism is discussed regarding passivation of the Mg alloy electrode in discharge/charge cycles.
UR - http://www.scopus.com/inward/record.url?scp=85102982734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102982734&partnerID=8YFLogxK
U2 - 10.1039/d0ta07974j
DO - 10.1039/d0ta07974j
M3 - Article
AN - SCOPUS:85102982734
SN - 2050-7488
VL - 9
SP - 6851
EP - 6860
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 11
ER -