TY - JOUR
T1 - Effects of hypercapnia and hypocapnia on [Ca2+]i mobilization in human pulmonary artery endothelial cells
AU - Nishio, Kazumi
AU - Suzuki, Yukio
AU - Takeshita, Kei
AU - Aoki, Takuya
AU - Kudo, Hiroyasu
AU - Sato, Nagato
AU - Naoki, Katsuhiko
AU - Miyao, Naoki
AU - Ishii, Makoto
AU - Yamaguchi, Kazuhiro
PY - 2001/6
Y1 - 2001/6
N2 - The hydrogen ion is an important factor in the alteration of vascular tone in pulmonary circulation. Endothelial cells modulate vascular tone by producing vasoactive substances such as prostacyclin (PGI2) through a process depending on intracellular Ca2+ concentration ([Ca2+]i). We studied the influence of CO2-related pH changes on [Ca2+]i and PGI2 production in human pulmonary artery endothelial cells (HPAECs). Hypercapnic acidosis appreciably increased [Ca2+]i from 112 ± 24 to 157 ± 38 nmol/l. Intracellular acidification at a normal extracellular pH increased [Ca2+]i comparable to that observed during hypercapnic acidosis. The hypercapnia-induced increase in [Ca2+]i was unchanged by the removal of Ca2+ from the extracellular medium or by the depletion of thapsigargin-sensitive intracellular Ca2+ stores. Hypercapnic acidosis may thus release Ca2+ from pH-sensitive but thapsigargin-insensitive intracellular Ca2+ stores. Hypocapnic alkalosis caused a fivefold increase in [Ca2+]i compared with hypercapnic acidosis. Intracellular alkalinization at a normal extracellular pH did not affect [Ca2+]i. The hypocapnia-evoked increase in [Ca2+]i was decreased from 242 ± 56 to 50 ± 32 nmol/l by the removal of extracellular Ca2+. The main mechanism affecting the hypocapnia-dependent [Ca2+]i increase was thought to be the augmented influx of extracellular Ca2+ mediated by extracellular alkalosis. Hypercapnic acidosis caused little change in PGI2 production, but hypocapnic alkalosis increased it markedly. In conclusion, both hypercapnic acidosis and hypocapnic alkalosis increase [Ca2+]i in HPAECs, but the mechanisms and pathophysiological significance of these increases may differ qualitatively.
AB - The hydrogen ion is an important factor in the alteration of vascular tone in pulmonary circulation. Endothelial cells modulate vascular tone by producing vasoactive substances such as prostacyclin (PGI2) through a process depending on intracellular Ca2+ concentration ([Ca2+]i). We studied the influence of CO2-related pH changes on [Ca2+]i and PGI2 production in human pulmonary artery endothelial cells (HPAECs). Hypercapnic acidosis appreciably increased [Ca2+]i from 112 ± 24 to 157 ± 38 nmol/l. Intracellular acidification at a normal extracellular pH increased [Ca2+]i comparable to that observed during hypercapnic acidosis. The hypercapnia-induced increase in [Ca2+]i was unchanged by the removal of Ca2+ from the extracellular medium or by the depletion of thapsigargin-sensitive intracellular Ca2+ stores. Hypercapnic acidosis may thus release Ca2+ from pH-sensitive but thapsigargin-insensitive intracellular Ca2+ stores. Hypocapnic alkalosis caused a fivefold increase in [Ca2+]i compared with hypercapnic acidosis. Intracellular alkalinization at a normal extracellular pH did not affect [Ca2+]i. The hypocapnia-evoked increase in [Ca2+]i was decreased from 242 ± 56 to 50 ± 32 nmol/l by the removal of extracellular Ca2+. The main mechanism affecting the hypocapnia-dependent [Ca2+]i increase was thought to be the augmented influx of extracellular Ca2+ mediated by extracellular alkalosis. Hypercapnic acidosis caused little change in PGI2 production, but hypocapnic alkalosis increased it markedly. In conclusion, both hypercapnic acidosis and hypocapnic alkalosis increase [Ca2+]i in HPAECs, but the mechanisms and pathophysiological significance of these increases may differ qualitatively.
KW - Hypercapnic acidosis
KW - Hypocapnic alkalosis
KW - Intracellular calcium
KW - PGI
UR - http://www.scopus.com/inward/record.url?scp=0034996579&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034996579&partnerID=8YFLogxK
U2 - 10.1152/jappl.2001.90.6.2094
DO - 10.1152/jappl.2001.90.6.2094
M3 - Article
C2 - 11356771
AN - SCOPUS:0034996579
SN - 8750-7587
VL - 90
SP - 2094
EP - 2100
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 6
ER -