Abstract
Electrochemical oxidation of Mn2+ with and without the presence of Bi3+ was studied using voltammetric and in situ spectro-electrochemical techniques at boron-doped diamond (BDD) electrodes in 1.0 M HClO4. Electrochemical oxidation of only Mn2+ resulted in the formation of mostly MnO2 with MnO4 - produced as a minor product. The MnO2 film formed on the electrode surface, which is an inevitable part of Mn2+ oxidation, shows a blocking effect on the formation of MnO4-, and reduces the overall current efficiency of MnO4- production. Higher Mn2+ concentrations result in less MnO 4- production due to the formation of more MnO 2. The addition of Bi3+ increased the current efficiency of MnO4- production. The Bi3+ is oxidized to Bi(V), which acts as an electrocatalyst in MnO4- production. The Bi(V) oxidizes MnO2, formed on the electrode surface, to MnO4-. This increases the production of MnO 4- by removing the blocking film to provide an active electrode (bare BDD) surface, which is available for further Mn2+ oxidation.
Original language | English |
---|---|
Pages (from-to) | E265-E270 |
Journal | Journal of the Electrochemical Society |
Volume | 151 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2004 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry