Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery

Noriyuki Uchida, Yunosuke Ryu, Yuichiro Takagi, Ken Yoshizawa, Kotono Suzuki, Yasutaka Anraku, Itsuki Ajioka, Naofumi Shimokawa, Masahiro Takagi, Norihisa Hoshino, Tomoyuki Akutagawa, Teruhiko Matsubara, Toshinori Sato, Yuji Higuchi, Hiroaki Ito, Masamune Morita, Takahiro Muraoka

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.

Original languageEnglish
Pages (from-to)6210-6220
Number of pages11
JournalJournal of the American Chemical Society
Issue number11
Publication statusPublished - 2023 Mar 22

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery'. Together they form a unique fingerprint.

Cite this