Ephrin-B2 Induces Migration of Endothelial Cells Through the Phosphatidylinositol-3 Kinase Pathway and Promotes Angiogenesis in Adult Vasculature

Hiromitsu Maekawa, Yuichi Oike, Shigeru Kanda, Yasuhiro Ito, Yoshihiro Yamada, Hiroki Kurihara, Ryozo Nagai, Toshio Suda

Research output: Contribution to journalArticlepeer-review

72 Citations (Scopus)

Abstract

Objective - Ephrin-B2 plays a key role in vascular development. The purpose of this study was to elucidate the molecular mechanisms of ephrin-B2 signaling through the EphB receptor in endothelial cells and to determine whether ephrin-B2 contributes to in vivo angiogenesis in adult mice. Methods and Results - A chemotaxis assay on a polycarbonate membrane revealed that ephrin-B2/Fc chimeric protein induced migration of human umbilical vein endothelial cells (HUVECs) at a level 98% greater than control (P<0.01). To determine the signaling pathways activated in the HUVECs by Eph stimulation, phosphatidylinositol-3 kinase (PI3 kinase) activity was determined in an immune complex PI3 kinase assay. Serum-starved HUVECs were stimulated with ephrin-B2/ Fc and compared with unstimulated cells. PI3 kinase activity in stimulated cells was higher than that seen in unstimulated cells. In a chemotaxis assay, the PI3 kinase-specific inhibitor LY294002 blocked the migratory response of HUVECs induced by addition of ephrin-B2/Fc. Finally, ephrin-B2/Fc promoted angiogenesis in vivo in corneal neovascularization and Matrigel plug assays in adult mice, whereas LY294002 reduced angiogenesis in Matrigel that was induced by ephrin-B2/Fc. Conclusions - Ephrin-B2/Fc induces the migration of HUVECs through the PI3 kinase signaling pathway. Ephrin-B2/Fc promotes in vivo angiogenesis in adult mice, suggesting that it contributes to adult angiogenesis.

Original languageEnglish
Pages (from-to)2008-2014
Number of pages7
JournalArteriosclerosis, Thrombosis, and Vascular Biology
Volume23
Issue number11
DOIs
Publication statusPublished - 2003 Nov

Keywords

  • Angiogenesis
  • Endothelial cells
  • Ephrin-B2
  • Migration
  • Phosphatidylinositol-3 kinase

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Ephrin-B2 Induces Migration of Endothelial Cells Through the Phosphatidylinositol-3 Kinase Pathway and Promotes Angiogenesis in Adult Vasculature'. Together they form a unique fingerprint.

Cite this