Ferromagnetically coupled dimers on the distorted Shastry-Sutherland lattice: Application to (CuCl)LaNb2O7

Shunsuke Furukawa, Tyler Dodds, Yong Baek Kim

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

A recent study has proposed a remarkable spin model for (CuCl)LaNb 2O7, in which dimers are ferromagnetically coupled to each other on the distorted Shastry-Sutherland lattice. In this model, the intradimer exchange coupling J>0 is antiferromagnetic, while the interdimer exchange couplings are ferromagnetic and take different values, J x,Jy<0, in the two bond directions. Anticipating that the highly frustrated character of this model may lead to a wide range of behaviors in (CuCl)LaNb2O7 and related compounds, we theoretically investigate the ground-state phase diagram of this model in detail using the following three approaches: a strong-coupling expansion for small Jx and Jy, exact diagonalization for finite clusters, and a Schwinger boson mean-field theory. When |Jx|,|Jy| J, the system stays in a dimer singlet phase with a finite spin gap. This state is adiabatically connected to the decoupled-dimer limit Jx=J y=0. We show that the magnetization process of this phase depends crucially on the spatial anisotropy of the interdimer couplings. The magnetization shows a jump or a smooth increase for weak and strong anisotropy, respectively, after the spin gap closes at a certain magnetic field. When |Jx| or |Jy| J, quantum phase transitions to various magnetically ordered phases (ferromagnetic, collinear stripe, and spiral) occur. The Schwinger boson analysis demonstrates that quantum fluctuations split the classical degeneracy of different spiral ground states. Implications for (CuCl)LaNb2O7 and related compounds are discussed in light of our theoretical results and existing experimental data.

Original languageEnglish
Article number054432
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume84
Issue number5
DOIs
Publication statusPublished - 2011 Aug 10
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Ferromagnetically coupled dimers on the distorted Shastry-Sutherland lattice: Application to (CuCl)LaNb2O7'. Together they form a unique fingerprint.

Cite this