TY - JOUR
T1 - Filler network model of filled rubber materials to estimate system size dependence of two-dimensional small-angle scattering patterns
AU - Hagita, Katsumi
AU - Tominaga, Tetsuo
AU - Hatazoe, Takumi
AU - Sone, Takuo
AU - Takano, Hiroshi
N1 - Funding Information:
Acknowledgments The authors thank Dr. H. Morita and Professor M. Doi for their useful discussions. The authors were partially supported by the Joint Usage=Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) and the High-Performance Computing Infrastructure (HPCI) in Japan. This research partially used computational resources of the K computer provided by the RIKEN Advanced Institute of Computational Science through the HPCI System Research Project (Project ID: hp130050, hp140082).
PY - 2018
Y1 - 2018
N2 - We proposed a filler network toy (FN-toy) model in order to approximately forecast changes in two-dimensional scattering patterns (2DSPs) of nanoparticles (NPs) in crosslinked polymer networks in ultrasmall-angle X-ray scattering (USAXS) experiments under uniaxial elongation. It enables us to estimate the system size dependence of the 2DSP of the NPs. In the FN-toy model, we considered NPs connected by harmonic springs with excluded-volume interactions among the NPs. In this study, we used the NP configurations estimated by reverse Monte Carlo (RMC) analysis for USAXS data observed in SPring-8 experiments on filler-filled styrene butadiene rubber (SBR). In the FN-toy model, we set a bond between every pair of NPs whose distance is less than Cd, where d is the diameter of an NP and C is a parameter that characterizes network properties. We determined the optimal value of C by comparison with 2DSPs of the NPs at 200% elongation for end-modified and unmodified SBR. These 2DSPs are obtained from the results of a largescale coarse-grained molecular dynamics (CGMD) simulation with 8,192 NPs and 160 million Lennard-Jones (LJ) particles in previous works. For the end-modified SBR, the fitted value is C = 1.367 and for the unmodified SBR, C = 1.258. The difference in C can be regarded as originating from the difference in polymer-NP interactions. We found that the harmonic potential used in the current FN-toy model is not sufficient to reproduce stress-strain curves and local structures of NPs obtained in the previous CGMD simulations, although the FN-toy model can reproduce the 2DSPs. Using the FN-toy model with the fitted value of C, we calculated the 2DSPs of 65,536 and 524,288 NPs, whose initial positions were estimated by RMC analysis for the same USAXS data. It was found that CGMD simulations with 10 billion LJ particles and 524,288 NPs can provide a high-resolution 2DSP that is comparable to the 2DSP observed in USAXS experiments.
AB - We proposed a filler network toy (FN-toy) model in order to approximately forecast changes in two-dimensional scattering patterns (2DSPs) of nanoparticles (NPs) in crosslinked polymer networks in ultrasmall-angle X-ray scattering (USAXS) experiments under uniaxial elongation. It enables us to estimate the system size dependence of the 2DSP of the NPs. In the FN-toy model, we considered NPs connected by harmonic springs with excluded-volume interactions among the NPs. In this study, we used the NP configurations estimated by reverse Monte Carlo (RMC) analysis for USAXS data observed in SPring-8 experiments on filler-filled styrene butadiene rubber (SBR). In the FN-toy model, we set a bond between every pair of NPs whose distance is less than Cd, where d is the diameter of an NP and C is a parameter that characterizes network properties. We determined the optimal value of C by comparison with 2DSPs of the NPs at 200% elongation for end-modified and unmodified SBR. These 2DSPs are obtained from the results of a largescale coarse-grained molecular dynamics (CGMD) simulation with 8,192 NPs and 160 million Lennard-Jones (LJ) particles in previous works. For the end-modified SBR, the fitted value is C = 1.367 and for the unmodified SBR, C = 1.258. The difference in C can be regarded as originating from the difference in polymer-NP interactions. We found that the harmonic potential used in the current FN-toy model is not sufficient to reproduce stress-strain curves and local structures of NPs obtained in the previous CGMD simulations, although the FN-toy model can reproduce the 2DSPs. Using the FN-toy model with the fitted value of C, we calculated the 2DSPs of 65,536 and 524,288 NPs, whose initial positions were estimated by RMC analysis for the same USAXS data. It was found that CGMD simulations with 10 billion LJ particles and 524,288 NPs can provide a high-resolution 2DSP that is comparable to the 2DSP observed in USAXS experiments.
UR - http://www.scopus.com/inward/record.url?scp=85040180076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040180076&partnerID=8YFLogxK
U2 - 10.7566/JPSJ.87.014802
DO - 10.7566/JPSJ.87.014802
M3 - Article
AN - SCOPUS:85040180076
SN - 0031-9015
VL - 87
JO - Journal of the Physical Society of Japan
JF - Journal of the Physical Society of Japan
IS - 1
M1 - 014802
ER -