TY - JOUR
T1 - Formation and characterization of five- and six-coordinate iron(III) corrolazine complexes
AU - Kurahashi, Satoshi
AU - Ikeue, Takahisa
AU - Sugimori, Tamotsu
AU - Takahashi, Masashi
AU - Mikuriya, Masahiro
AU - Handa, Makoto
AU - Ikezaki, Akira
AU - Nakamura, Mikio
N1 - Funding Information:
This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grant 22750052 to T.I. and Grant 22550157 to M.N.). Thanks are due to the Research Center for Molecular-Scale Nanoscience, the Institute for Molecular Science (IMS). This work was also supported by the Research Center for Materials with Integrated Properties, Toho University.
PY - 2012
Y1 - 2012
N2 - Electronic structures of five- and six-coordinate iron(III) corrolazine complexes are determined by means of 1H NMR, 13C NMR, EPR, and Mössbauer spectroscopy as well as SQUID magnetometry. A series of five-coordinate complexes, [FeIII(TBP8Cz)(L)]* where the axial ligands(L) are cyanide(CN-), imidazole(HIm), 1-methylimidazole(1-MeIm), 4-(N,N-dimethylamino)pyridine(DMAP), pyridine(Py), 4-cyanopyridine(4-CNPy), and tert-butylisocyanide(tBuNC), are obtained by the addition of 1 to 2 equiv. of the ligands to the dichloromethane solutions of FeIII(TBP8Cz) at 298 K: TBP8Cz is a trianion of 2,3,7,8,12,13,17,18-octakis(4-tert-butylphenyl)corrolazine. These complexes commonly show the S = 3/2 at 298 K. By contrast, formation of the six-coordinate complexes depends on the nature of the axial ligands. While the addition of 3 equiv. of CN- has completely converted Fe III(TBP8Cz) to (Bu4N)2[Fe III(TBP8Cz)(CN)2] at 298 K, the conversion to the bis-adduct is only attained below ca. 200 K in the case of HIm, 1-MeIm, and DMAP even in the presence of 50 equiv. of the ligands. If the axial ligand is Py, 4-CNPy, or tBuNC, the formation of [FeIII(TBP 8Cz)(L)2] is confirmed only at an extremely low temperature (15 K). Close inspection of the 1H NMR and EPR spectra has revealed that all the bis-adducts adopt the (dxy) 2(dxz, dyz)3 ground state. While FeIII(TBP8Cz) forms paramagnetic bis- and mono-adduct in toluene solution at 298 K in the presence of excess amount of CN- and tBuNC, respectively, the corresponding porphyrazine complex, [FeIII(TBP8Pz)]Cl, forms diamagnetic bis-CN and bis- tBuNC under the same conditions: TBP8Pz is a dianion of 2,3,7,8,12,13,17,18-octakis(4-tert-butylphenyl)-porphyrazine. Thus, the iron(III) ion of porphyrazine complex is more easily reduced than that of the corresponding corrolazine complex.
AB - Electronic structures of five- and six-coordinate iron(III) corrolazine complexes are determined by means of 1H NMR, 13C NMR, EPR, and Mössbauer spectroscopy as well as SQUID magnetometry. A series of five-coordinate complexes, [FeIII(TBP8Cz)(L)]* where the axial ligands(L) are cyanide(CN-), imidazole(HIm), 1-methylimidazole(1-MeIm), 4-(N,N-dimethylamino)pyridine(DMAP), pyridine(Py), 4-cyanopyridine(4-CNPy), and tert-butylisocyanide(tBuNC), are obtained by the addition of 1 to 2 equiv. of the ligands to the dichloromethane solutions of FeIII(TBP8Cz) at 298 K: TBP8Cz is a trianion of 2,3,7,8,12,13,17,18-octakis(4-tert-butylphenyl)corrolazine. These complexes commonly show the S = 3/2 at 298 K. By contrast, formation of the six-coordinate complexes depends on the nature of the axial ligands. While the addition of 3 equiv. of CN- has completely converted Fe III(TBP8Cz) to (Bu4N)2[Fe III(TBP8Cz)(CN)2] at 298 K, the conversion to the bis-adduct is only attained below ca. 200 K in the case of HIm, 1-MeIm, and DMAP even in the presence of 50 equiv. of the ligands. If the axial ligand is Py, 4-CNPy, or tBuNC, the formation of [FeIII(TBP 8Cz)(L)2] is confirmed only at an extremely low temperature (15 K). Close inspection of the 1H NMR and EPR spectra has revealed that all the bis-adducts adopt the (dxy) 2(dxz, dyz)3 ground state. While FeIII(TBP8Cz) forms paramagnetic bis- and mono-adduct in toluene solution at 298 K in the presence of excess amount of CN- and tBuNC, respectively, the corresponding porphyrazine complex, [FeIII(TBP8Pz)]Cl, forms diamagnetic bis-CN and bis- tBuNC under the same conditions: TBP8Pz is a dianion of 2,3,7,8,12,13,17,18-octakis(4-tert-butylphenyl)-porphyrazine. Thus, the iron(III) ion of porphyrazine complex is more easily reduced than that of the corresponding corrolazine complex.
KW - corrolazine
KW - electron configuration
KW - iron(III) complexes
KW - spin state
UR - http://www.scopus.com/inward/record.url?scp=84862855611&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862855611&partnerID=8YFLogxK
U2 - 10.1142/S1088424612500460
DO - 10.1142/S1088424612500460
M3 - Article
AN - SCOPUS:84862855611
SN - 1088-4246
VL - 16
SP - 518
EP - 529
JO - Journal of Porphyrins and Phthalocyanines
JF - Journal of Porphyrins and Phthalocyanines
IS - 5-6
ER -