Formation of a superatom monolayer using gas-phase-synthesized Ta@Si16 nanocluster ions

Masato Nakaya, Takeshi Iwasa, Hironori Tsunoyama, Toyoaki Eguchi, Atsushi Nakajima

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)


The controlled assembly of superatomic nanocluster ions synthesized in the gas phase is a key technology for constructing a novel series of functional nanomaterials. However, it is generally difficult to immobilize them onto a conductive surface while maintaining their original properties owing to undesirable modifications of their geometry and charge state. In this study, it has been shown that this difficulty can be overcome by controlling the donor-acceptor interaction between nanoclusters and surfaces. Cations of Ta-atom-encapsulated Si16 cage nanoclusters (Ta@Si16) behaving as rare-gas-like superatoms are synthesized in the gas phase and deposited on conductive surfaces terminated with acceptor-like C60 and donor-like α-sexithiophene (6T) molecules. Scanning tunneling microscopy and spectroscopy have demonstrated that Ta@Si16 cations can be densely immobilized onto C60-terminated surfaces while retaining their cage shape and positive charge, which is realized by creating binary charge transfer complexes (Ta@Si16+-C60-) on the surfaces. The Ta@Si16 nanoclusters exhibit excellent thermal stability on C60-teminated surfaces similar to those in the gas phase, whereas the nanoclusters destabilize at room temperature on 6T-terminated surfaces owing to the loss of electronic closure via a change in the charge state.

Original languageEnglish
Pages (from-to)14702-14707
Number of pages6
Issue number24
Publication statusPublished - 2014 Dec 21

ASJC Scopus subject areas

  • General Materials Science


Dive into the research topics of 'Formation of a superatom monolayer using gas-phase-synthesized Ta@Si16 nanocluster ions'. Together they form a unique fingerprint.

Cite this