TY - JOUR
T1 - Free Radical Activity Depends on Underlying Vasoconstrictors in Renal Microcirculation
AU - Ozawa, Yuri
AU - Hayashi, Koichi
AU - Wakino, Shu
AU - Kanda, Takeshi
AU - Homma, Koichiro
AU - Takamatsu, Ichiro
AU - Tatematsu, Satoru
AU - Yoshioka, Kyoko
AU - Saruta, Takao
PY - 2004/4/1
Y1 - 2004/4/1
N2 - We examined the role of free radicals in renal microvascular tone induced by various vasoactive stimuli. Isolated perfused rat hydronephrotic kidneys were used for direct visualization of renal microcirculation. The effect of tempol on angiotensin II-, norepinephrine-, KCl-, and pressure-induced afferent arteriolar constriction was evaluated. Under angiotensin II-induced constriction, tempol (3 mmol/L) caused 57 ± 8% dilation of afferent arterioles. In contrast, tempol elicited only 38 ± 8% and 26 ± 9% dilation of norepinephrine- and KCl-induced constriction. Similarly, myogenic response induced by elevating renal arterial pressure from 80 to 180 mmHg was resistant to the vasodilator action of tempol (22 ± 7% inhibition). Furthermore, tempol failed to reverse nitro-L-arginine methylester-induced afferent constriction, nor had vasodilator effect on the angiotensin II-induced constriction in the presence of nitro-L-arginine methylester. In contrast, nitroprusside elicited marked vasodilation of angiotensin II- (97 ± 5% reversal) and norepinephrine-induced afferent constriction (89 ± 6% reversal), but had less effect on KCl- (46 ± 8% reversal) and pressure-induced constriction (26 ± 9% reversal). These different actions were also observed when polyethylene-glycolated superoxide dismutase was used as an antioxidant. In conclusion, the role of free radicals in afferent arteriolar tone varies, depending on the underlying vasoconstrictor stimuli, with greater contribution of free radicals to angiotensin II-induced constriction. The heterogeneity in the responsiveness to free radical scavengers is attributed to both magnitude of free radicals produced and sensitivity of the underlying vasoconstrictors to nitric oxide.
AB - We examined the role of free radicals in renal microvascular tone induced by various vasoactive stimuli. Isolated perfused rat hydronephrotic kidneys were used for direct visualization of renal microcirculation. The effect of tempol on angiotensin II-, norepinephrine-, KCl-, and pressure-induced afferent arteriolar constriction was evaluated. Under angiotensin II-induced constriction, tempol (3 mmol/L) caused 57 ± 8% dilation of afferent arterioles. In contrast, tempol elicited only 38 ± 8% and 26 ± 9% dilation of norepinephrine- and KCl-induced constriction. Similarly, myogenic response induced by elevating renal arterial pressure from 80 to 180 mmHg was resistant to the vasodilator action of tempol (22 ± 7% inhibition). Furthermore, tempol failed to reverse nitro-L-arginine methylester-induced afferent constriction, nor had vasodilator effect on the angiotensin II-induced constriction in the presence of nitro-L-arginine methylester. In contrast, nitroprusside elicited marked vasodilation of angiotensin II- (97 ± 5% reversal) and norepinephrine-induced afferent constriction (89 ± 6% reversal), but had less effect on KCl- (46 ± 8% reversal) and pressure-induced constriction (26 ± 9% reversal). These different actions were also observed when polyethylene-glycolated superoxide dismutase was used as an antioxidant. In conclusion, the role of free radicals in afferent arteriolar tone varies, depending on the underlying vasoconstrictor stimuli, with greater contribution of free radicals to angiotensin II-induced constriction. The heterogeneity in the responsiveness to free radical scavengers is attributed to both magnitude of free radicals produced and sensitivity of the underlying vasoconstrictors to nitric oxide.
KW - Afferent arterioles
KW - Angiotensin II
KW - Free radicals
KW - Nitric oxide
KW - Norepinephrine
KW - Tempol
UR - http://www.scopus.com/inward/record.url?scp=1942501534&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1942501534&partnerID=8YFLogxK
U2 - 10.1081/CEH-120030231
DO - 10.1081/CEH-120030231
M3 - Article
C2 - 15132300
AN - SCOPUS:1942501534
SN - 1064-1963
VL - 26
SP - 219
EP - 229
JO - Clinical and Experimental Hypertension
JF - Clinical and Experimental Hypertension
IS - 3
ER -