Fundamental precision limit of a Mach-Zehnder interferometric sensor when one of the inputs is the vacuum

Masahiro Takeoka, Kaushik P. Seshadreesan, Chenglong You, Shuro Izumi, Jonathan P. Dowling

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)


In the lore of quantum metrology, one often hears (or reads) the following no-go theorem: If you put a vacuum into one input port of a balanced Mach-Zehnder interferometer, then no matter what you put into the other input port, and no matter what your detection scheme, the sensitivity can never be better than the shot-noise limit (SNL). Often the proof of this theorem is cited to be in C. Caves, Phys. Rev. D 23, 1693 (1981)0556-282110.1103/PhysRevD.23.1693, but upon further inspection, no such claim is made there. Quantum-Fisher-information-based arguments suggestive of this no-go theorem appear elsewhere in the literature, but are not stated in their full generality. Here we thoroughly explore this no-go theorem and give a rigorous statement: the no-go theorem holds whenever the unknown phase shift is split between both of the arms of the interferometer, but remarkably does not hold when only one arm has the unknown phase shift. In the latter scenario, we provide an explicit measurement strategy that beats the SNL. We also point out that these two scenarios are physically different and correspond to different types of sensing applications.

Original languageEnglish
Article number052118
JournalPhysical Review A
Issue number5
Publication statusPublished - 2017 Nov 15
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Fundamental precision limit of a Mach-Zehnder interferometric sensor when one of the inputs is the vacuum'. Together they form a unique fingerprint.

Cite this